DIN Timers TDAS

Key Features

- · Asymetrical DIN Timer
- · Multi time range
- Compact design
- · Universal voltage input 24-300V AC/DC
- Single module size

Specification

	TDAS
Adjustable Values / Time Range	1 second
	10 second
	100 second
	1 minute
	10 minute
	1 hour
	10 hour
	100 hour
	1 day
	10 day
Multiplier	0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 - 0.9 - 1

Indication Lights Legend

LED	State	Description
On / t	ON	Power On
	OFF	Power Off
Relay Output	ON	Output relay energised
	OFF	Output relay de-energised
M1, M2	ON	On-Off delay mode
	M2 flashing, M1 off	On delay mode
	M1 flashing, M2 off	Off delay mode
	Flash sequentially	On flasher mode
	Flash simultaneously	Off flasher mode

Time Settings

Time range knob selects full scale time range. The $t_{\rm on}$ and $t_{\rm off}$ multiplier knobs provide fine adjustment of t and t time values within the full scale time range. Knob positions are latched upon startup to avoid accidental changes during operation. Therefore changing knob positions have no effect when the device is operational. The below example shows how to set particular ton and toff values

t Multiplier

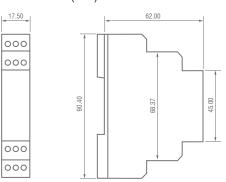
t Multiplier

In the above figure: $t_{of} = 10h \times 0.5 = 5 \text{ hour}$ $t_{off} = 10h \times 0.1 = 1 \text{ hour}$

Note: All the pot values are digitalised. Cannot be set to mid values.

Connections

Power Input 24..300V AC/DC


Relay

Technical Datasheet

Dimensions (mm)

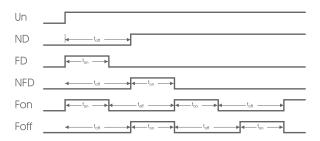
Mode Functions

ND - On Delay

The output relay is initially de-energised and energised after an adjustable time delay, tour

The output relay is intially energised and de-energised after an adjustable time delay, t_{∞} .

NFD - On-Off Delay


The output relay is intially de-energised and energised after an adjustable time delay. $t_{\rm eff}$ and stays energised for an adjustable period, $t_{\rm on}$, and then de-energised.

Fon - On Flasher

The output relay is initially energised and de-energised after an adjustable time delay, t_{on} and stays de-energised for an adjustable period, t_{otr} and then energised. This loop is repeated until the device is powered off.

Foff - Off Flasher

The output relay is intially de-energised and energised after an adjustable time delay, $t_{\rm off}$ and stays energised for an adjustable period, t_{on} , and then de-energised. This loop is repeated until the device is powered off.

