ZENER VARIDRIVE SOLUTIONS

Installation Manual

Document: Printed: IM00124 Rev A 29 May 2018

PRODUCT

This manual provides installation information for the following ZENER 8000 models;

- 8R: 380 to 480VAC
- 8L: 200 to 240VAC
- 8E: ECODRIVE 800VDC/380 to 480VAC (Auxiliary AC Supply)
- 8EL: ECODRIVE 400VDC/200 to 240VAC (Auxiliary AC Supply)

For information relating to the ECODRIVE and the connection to a solar array, refer to the *supplement manual IM00130* <u>http://www.zener.com.au/images/im00130.pdf</u>

This manual provides basic control configuration information to suit more common applications. Please refer to the *ZENER 8000 Reference Manual IM00140* <u>http://www.zener.com.au/images/im00140.pdf</u> for a detailed explanation of each control feature, including communications protocols.

All documentation for this product can be found on our product support link:

http://www.zener.com.au/support-zener.php

ZENER TECHNOLOGY AND QUALITY ASSURANCE

Since 1976 Zener Electric has supplied many thousands of drives to industry. These drives have been installed into numerous applications resulting in a wealth of in house experience. The Zener 8000 AC variable speed controller is the culmination of this experience, modern technology and industrial application requirements. The Zener Quality Assurance program ensures that every ZENER 8000 manufactured has proven to operate correctly in the production test bay before dispatch.

SAFETY

Your ZENER 8000 must be applied, installed and operated in a safe manner. It is the responsibility of the user to ensure compliance with all regulations and practices covering the installation and wiring of your ZENER 8000. The instruction manual should be completely read and understood before attempting to connect or operate the ZENER 8000. Only skilled personnel should install this equipment.

This equipment contains a number of components that are designated by their various manufacturers as "not for use in life support appliances, devices or systems where malfunction of the components can reasonably be expected to result in personal injury or death". Customers using or selling Zener products for use in such applications do so at their own risk and agree to indemnify Zener for any damage resulting from improper use or sale.

THE CONTENTS OF THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE

Zener is a registered trademark of Zener Electric Pty Limited

Contents

Explanation of symbols	1
Warnings	1
Receiving	2
Software	2
Installation	3
ZENER 8000 mounting location	3
Supply circuit protection and switchgear	4
Cable sizes	4
Earthing & Earth Cables	4
Electrical Isolation	4
Motor thermal protection	4
Fuse and Circuit Breaker Ratings for all ZENER 8000 Models	5
ZENER 8000 Power wiring for 3 Phase supply	6
DC bus chokes	6
Input / Output Filters	6
ZENER 8000 Power wiring for Single Phase Supply	7
ZENER 8000 with a DC Supply	8
ZENER 8000 with a DC Supply from a Solar Array	8
Generator Supplies	8
Installation practices for Electromagnetic Compatibility (EMC) compliance	9
Wiring materials for EMC compliance	9
Chassis A (1-11Amp) IP30 EMC Installation	10
Chassis A (1-16Amp) IP66 EMC Installation	11
Chassis B (23 – 57Amp) EMC Installation	12
Chassis C (82 – 170Amp) EMC Installation	13
Chassis D (175 – 490Amp) EMC Installation	14
EIA/RS-485 Communications Wiring	15
Best practice	15
General	16
Shortcuts	16
Plug-in Option Board Wiring	17
Ethernet network interface	18
Remote mounted display	18

ZENER 8000 Start Up	19
Finding your way around	19
Control Modes	19
Local	19
Remote	19
Operation Displays & Pushbuttons	20
Local Mode Operation Example	20
Complete Menu	21
Setup for your application	22
What is a ZENER 'Application'	22
Loading an Application	22
Applications	23
Standard ZENER8000 Applications	23
Application Menus	24
Changing an Application	24
Application user menu	26
Control connections and configuration	27
Factory default settings	27
Settings for your application	27
Quick Setup	27
Control Inputs	28
Selecting Standard Input Configuration	28
Essential Services Override (Fire mode)	29
Setup using DEFAULT CONFIGURATION	30
Typical Connections	30
Setup Procedure:	31
Setup using APPLICATION 'Basic Control' {SW08018}	33
Control Wiring	33
Setup Procedure	
Config & User Parameters	
Setup using APPLICATION 'Machine/JOG' {SW08008}	
Control Wiring:	
Setup Procedure:	37
Setup using APPLICATION 'Cooling Tower' {SW08007}	39
Control Wiring	39

Setup Procedure:	40
Setup using APPLICATION 'HVAC Fan' {SW08012}	42
Control Wiring	42
Setup Procedure	43
Setup using APPLICATION 'Stairwell Fan' {SW08010}	45
Control Wiring	45
Setup Procedure	46
Setup using APPLICATION 'Air Pressure' {SW08011}	48
Control Wiring	48
Setup Procedure	49
Setup using APPLICATION '4 Speed Sel' {SW08017}	51
Control Wiring	51
Setup Procedure	52
Setup using APPLICATION: 'Pressure Ctl' {SW08013}	54
Control Wiring	54
Setup Procedure	55
Setup using APPLICATION: 'PUMP PID 1' {SW08019}	57
Control Wiring	57
Setup Procedure	58
Setup using APPLICATION: 'PUMP PID 2' {SW08020}	61
Control Wiring	61
Setup Procedure	62
PID Parameters explanation	66
Guide to PID Tuning	67
Additional detailed information	67
Communications Protocols	67
Display Messages	68
Specifications	70
Output Current Specifications	72
Input supply and terminal torques	73
Troubleshooting Guide	74
Your ZENER 8000 Setup Notes	77
Mechanical Installation Information	83
Chassis A IP30 / NEMA 1 (1 - 11 Amps)	83
Chassis A IP66 / NEMA 4 (1-16Amps)	83

Chassis B (23 - 57 Amps)	84
Chassis C (82 - 170Amps)	85
Chassis D Wall mount (220 – 490 Amps)	86
Chassis D with optional Floor mount (220 – 490 Amps)	87
Transportation sizes and weights	88
Glossary	89

Explanation of symbols

i		This symbol is used to highlight additional information on the product's capabilities or a common error in installation, commissioning or operation.
	WARNING	This symbol is used to highlight an electrical hazard. Failure to strictly observe the warning could result in electrocution.
	CAUTION	Indicates a condition or practice, if the caution is not strictly observed, could lead to damage or destruction of equipment or a significant impairment of proper operation.
	WARNING	Indicates a condition or practice that, if the warning is not strictly observed, could result in personal injury or death.

Warnings

Read all operating instructions before installing, wiring, operating, servicing or inspecting the ZENER 8000.

Ensure that the instruction manual is made available to the final user of the product as well as all personnel involved in any aspect of installation, adjustment or maintenance.

Your ZENER 8000 must be applied and installed by a suitably qualified and experienced electrical tradesperson in accordance with this manual, good engineering practice and all local rules and regulations.

There are hazardous voltages inside the ZENER 8000 whenever it is connected to an electrical supply and for some time afterwards.

Before touching anything inside the ZENER 8000 enclosure or other equipment connected to the ZENER 8000 terminals, disconnect all sources of electrical power, wait at least 11 minutes for capacitors within the ZENER 8000 to discharge to less than 50VDC and then ensure, by measurement, that there is no hazardous AC or DC voltage present at any terminal.

The ZENER 8000 contains high energy circuits that may be hazardous. Do not operate the ZENER 8000 with the door open or any part of the enclosure removed.

Do not touch the terminals of the ZENER 8000 or any associated motor and wiring when it is energised, even if the ZENER 8000 and motor are stopped. Electric shock may result.

Do not modify this equipment electrically, mechanically or otherwise. Modification may create safety hazards as well as voiding the UL listing of models so listed.

The ZENER 8000 is designed to drive an appropriately rated and otherwise suitable 3 phase induction motor. It is not suitable for single phase motors or other types of motor or non-motor load. Use with inappropriate load types may create a safety hazard.

Where the ZENER 8000 is used as a component part of another product, it is the purchaser's responsibility to ensure that the final product meets all of the necessary safety, EMC, regulatory, operational and other requirements for that product. Requirements for the purchaser's final product may be substantially different to the requirements for stand-alone drive systems.

The ZENER 8000 is intended for use only in fixed wiring applications. It is not intended for use on a flexible supply cable.

The compatibility of drive systems incorporating ZENER 8000 and earth leakage protected electrical supply circuits is influenced by EMC filter components within the ZENER 8000 as well as other system components. Contact ZENER for further information before applying ZENER 8000 models to earth leakage protected installations.

Mount the ZENER 8000 on a vertical, incombustible surface such as metal or masonry. Do not place combustible or flammable material near the ZENER 8000. Failure to observe these precautions may create a fire hazard.

The ZENER 8000 is manufactured under strict quality control arrangements, however additional and independent safety equipment must be installed if the application is such that failure of the product may result in personal injury or property damage.

Ensure that electrical noise generated by the product and any associated equipment does not adversely affect the proper operation of other equipment or systems, particularly those that have a safety function.

Install emergency stop circuitry that removes power from the ZENER 8000 and does not depend on any feature of the product for proper and safe operation. Do not use the braking functions of the product for safety purposes.

The ZENER 8000 has features that may be used to cause an automatic restart in certain circumstances. The overall application (machine etc.) must be designed such that automatic restart is not hazardous.

Do not install this equipment in locations where mechanical damage to the enclosure is possible. In particular, consider vehicles, vandalism and attack by insects or animals. Severe equipment damage and safety hazards may result.

Receiving

- Inspect the ZENER 8000 for any shipping damage. If any damage is found, report it to the carrier immediately.
- Access the inside of the controller and visually check for any damage.
- Do not attempt to operate the ZENER 8000 if any obvious damage exists.
- After the initial inspection, the ZENER 8000 can be repacked and stored in a clean, dry location until it is required for use.
- DO NOT store this equipment in an area where the ambient temperature will fall below -20°C or rise above 70°C.
- DO NOT store this equipment in areas that are subject to condensation or corrosive atmosphere. Proper storage is necessary to ensure satisfactory controller start up and performance.

Software

This manual applies to ZENER 8000 software revision 5.2.8. The software revision is displayed briefly at power up and may also be viewed in the service menu.

This manual provides installation and basic control configuration information for the ZENER 8000 to suit more common applications. Please refer to the <u>ZENER 8000 Reference Manual</u> <u>IM00140</u> for a detailed explanation of each control feature, including communications protocols.

Installation

ZENER 8000 mounting location

See page 83 and following pages for mechanical installation dimensions and necessary clearances for ventilation.

In general, the ZENER 8000 should be mounted as close to the motor as practical, consistent with other requirements. This is not an absolute requirement, but the following advantages may support such a choice:

- Generally, electrical cabling costs per metre are lower for the unscreened power cable used on the AC supply side than for the screened output cable required between the ZENER 8000 and the motor. Cabling costs can therefore be expected to be lower when less screened cable is needed.
- EMC performance can be expected to be mildly enhanced with a shorter motor cable because of reduced leakage from the cable
- In circumstances where an isolator switch is required near the motor, it may be possible to connect this
 in the AC supply to the ZENER 8000. This has the advantages of saving two screened cable terminations
 and allowing the use of a non-metallic isolator switch enclosure where allowed by local electrical codes.
 There are also safety advantages for service personnel in that the local isolator switch also isolates the
 ZENER 8000 from the electrical supply.

The choice is predominantly an economic one. There are many perfectly satisfactory installations where, for a variety of specific site reasons, the most effective solution results in the ZENER 8000 and the motor being a long distance apart.

CAUTION Installation Information

- See page 83 and following pages for mechanical installation dimensions and necessary clearances for ventilation.
- The ZENER 8000 must be mounted on a vibration free vertical surface, away from heat radiating sources. Do not mount the ZENER 8000 in direct sunlight or on a hot surface.
- The ZENER 8000 must be mounted vertically. No other mounting orientation is acceptable.
- If the ZENER 8000 is mounted inside another enclosure, the total heat dissipation and resulting temperature rise in the enclosure must be allowed for.
- Attention is drawn to the potential for condensation in vulnerable environments. Additional precautions may be required for all enclosure types.
- The installation location and environment should provide for safe access and working conditions for service personnel. Do not mount the ZENER 8000 in "confined spaces"¹
- Do not drill holes in the enclosure except in the gland plate.
- Remove the gland plate before drilling cable holes.
- Do not allow metal shavings or any other conductive material to enter the enclosure or damage may result.

¹Confined spaces are generally defined in Occupational Health and Safety (OH&S) regulations to mean spaces where special precautions are necessary to ensure a safe breathing atmosphere, or there is limited access for escape/rescue in case of emergency

Supply circuit protection and switchgear

Either fuses or a circuit breaker must be connected as shown. The protective elements used and any upstream switchgear (contactors, isolation switches etc) must be selected with due regard for the prospective short circuit currents of the electrical supply and the requirements of your local electrical code. The selection should provide for "type II" (no damage) coordination as per IEC 60947 or Australian Standard AS 3947.

Fuses or circuit breakers of the current limiting type are preferred in order to minimise the total energy let through in the unlikely, but possible, event of a major arcing fault in wiring or within ZENER 8000 enclosure.

Installations that are required to be UL compliant must use UL listed fuses of the amp rating and class detailed on page 10 of this manual.

Cable sizes

Cable sizes should be selected according to local wiring rules using the currents given in the table on page 72-73. Note that the power terminals of the ZENER 8000 are designed to accept normally stranded power cables with temperature rating of 70°C or more. In the event that other cable types are to be used (particularly flexible cables with very fine stranding), the overall size of the conductor should be checked prior to final cable selection for proper fit in the power terminals. The combination of the cable and the supply circuit protection selected must be such that the supply cable is properly protected under all circumstances.

Earthing & Earth Cables

The ZENER 8000 chassis and the frame of the associated motor must be connected to earth at all times when the electrical supply is connected. The protective earth conductors used for this purpose should be selected according to local electrical installation regulations. Conductors in the vicinity of unscreened motor cables such as cable trays and similar supports should also be earthed to avoid hazards caused by capacitively coupled voltages.

Electrical Isolation

A suitable means of isolating the ZENER 8000 from the electrical supply must be provided in accordance with your local electrical code. In the event that a second supply is connected to the relay contacts on the control terminal strip (or otherwise brought into the ZENER 8000 enclosure), suitable marking must be applied to the outside of the ZENER 8000 enclosure by the installer to indicate the dual supply arrangement in accordance with your local electrical code and other safety requirements. A means of isolating the second electrical supply source will also be required.

Motor thermal protection

The ZENER 8000 provides an electronic type thermal overload function that relies on the measured motor current to estimate the thermal conditions of the motor. For complete motor thermal protection, microtherms or thermistors should be installed in the motor winding and wired to the appropriate trip relay. The ZENER 8000 Extended Features Option provides a thermistor relay function and other features.

Model Numbers	Chassis Size	Maximum RMS Input Current	Recommended Fuse or C/B Rating (A)	UL Class Fuse for UL compliant installation (A)†
8*001	A	2.9	10	10A, Class J
8*003	А	5.2	10	10A, Class J
8*005	А	7.3	10	10A, Class J
8*007	А	10.5	16	15A, Class J
8*011	А	15.7	20	20A, Class J
8*016D.	А	17.8	20	20A, Class J
8*023	В	34.7	40	40A, Class T
8*030	В	42.7	63	60A, Class T
8*040D.	В	53.5	63	60A, Class T
8*057D.	В	66.1	75	75A, Class J
8*082D6	С	89.1	125	125A, Class T
8*109D6	С	123	160	175A, Class T
8*140D6	С	153	200	175A, Class T
8*170D.	С	183	200	200A, Class T
8R220D4	D	231	250	250A, Class T
8R315D4	D	336	400	400A, Class T
8R390D4	D	413	630	630A, Class T
8R490D4	D	516	630	630A, Class T

Fuse and Circuit Breaker Ratings for all ZENER 8000 Models

* R or L to specify supply voltage - see page 70 for details.

⁺ The fuse class referred to here is the American designation fuse required for a UL compliant installation. This should not be confused with the British Type T etc designation, which refers to an entirely different kind of fuse.

ZENER 8000 Power wiring for 3 Phase supply

Be sure to review the information on the following pages concerning electrical installation issues.

See installation practices for Electromagnetic compatibility (EMC) compliance on page 9 and specific information for the EMC compliant installation of each chassis size on pages 10-14 BEFORE selecting or installing motor cables and glands.

The screened motor cable should only contain the phase and earth (PE) conductors of one ZENER 8000 and the associated motor. Do not include other conductors inside the screen.

DC bus chokes

ZENER 8000 may be fitted with an optional DC bus choke (standard in some models). Fitting this option offers several benefits:

- Considerable reduction in harmonic and RMS currents in the AC line, particularly on low impedance (high fault level) electrical supplies. Values become relatively independent of AC line parameters, simplifying application design.
- Increased tolerance to phase imbalance in the 3 phase AC supply.
- Increased immunity to AC line transients.

Input / Output Filters

ZENER offers various input and output filters to a wide range of applications including

- Harmonic reduction filters
- Submersible pump filters
- dv/dt limitation filters
- High performance output filters

And the capability to design and supply special filters.

Contact ZENER for details.

ZENER 8000 Power wiring for Single Phase Supply

f G

The D05 1 Phase Input Supply feature on page 77 must be enabled for single phase supply operation

Be sure to review the information on the following pages concerning electrical installation issues.

See installation practices for Electromagnetic compatibility (EMC) compliance on page 9 and specific information for the EMC compliant installation of each chassis size on pages 10-14 BEFORE selecting or installing motor cables and glands.

The screened motor cable should only contain the phase and earth (PE) conductors of one ZENER 8000 and the associated motor. Do not include other conductors inside the screen.

Many ZENER 8000 models can be operated from a single phase AC supply. In addition to the electrical installation information on pages 4 to 6, the following additional constraints apply to operation on a single phase power supply:

- The single-phase supply voltage must be within the 3 phase supply voltage limits for the ZENER 8000 model to be used. For example, use an "8L-----" model for a 240VAC single-phase supply or an "8R-----" model for a 480VAC single phase supply.
- A standard 3-phase motor of a voltage rating appropriate to the ZENER 8000 model should be used.
- See the specifications section of this manual for output voltages.
- Fuses or circuit breakers for the AC supply should be according to the table on page 5.
- Single-phase motors are unsuitable for use with ZENER 8000.
- The DC Bus Choke option is mandatory for operation from a single-phase supply.
- The continuous output current rating is reduced from the values stated for 3-phase supply operation according to the graph on the right.

- The maximum available output voltage will decrease to 95% of the RMS input voltage. This is a consequence operating from a single phase supply and means that the available motor torque at full speed will be reduced to approximately 90% of the motor rated torque. De-rating can be avoided if the single phase input voltage is at least 1.05 times the rated motor voltage.
- The single phase input current (RMS) will be approximately 2.0x the output current.

ZENER 8000 with a DC Supply

Some models of ZENER 8000 may be used with a DC supply. There are a number of issues to be considered in properly applying ZENER 8000 in this situation, some of which involve the characteristics of the particular DC supply to be used. Zener also offers ECODRIVE models specifically designed for use in solar photovoltaic systems.

Please consult the factory for proper application of ZENER 8000 on DC supply systems.

ZENER 8000 with a DC Supply from a Solar Array

The ECODRIVE model is a ZENER 8000 with special firmware and hardware designed to operate directly from the DC supply sourced from a solar array. The standard ZENER 8000 cannot be used for this purpose.

The ECODRIVE can also operate with an auxiliary AC supply sourced from a grid or generator supply. When the ECODRIVE is used with both an AC supply and a DC supply sourced from an array you must read both this manual and the ECODRIVE supplement manual.

Refer to the <u>ECODRIVE support webpage</u> for the supplement manual (IM00130) for more details.

www.zener.com.au/support-8e.php

Generator Supplies

The ZENER 8000 may be used with a generator supply. Contact ZENER for further information concerning application and compatibility considerations.

Installation practices for Electromagnetic Compatibility (EMC) compliance

The EMC performance of the ZENER 8000 is installation dependent. For compliance with EMC standards, the use of a screened power cable between the ZENER 8000 and the motor is required. Other arrangements that provide a continuous metallic sheath enclosing only the motor phase conductors and the associated protective earth (PE) conductor may also be used.

In order to achieve the required electrical performance at high frequencies, it is essential that the screen of the cable have a 360° connection to both the ZENER 8000 gland plate and the motor terminal box. The correct type of metal cable gland to suit the screened cable should be used. The protective earth (PE) conductor should be terminated in the usual way to meet the local wiring codes at the ground terminals provided in the ZENER 8000 and the motor. Isolation switches wired between the ZENER 8000 and the motor should be in a metallic enclosure with the power cable screen properly terminated on both sides. Failure to properly terminate the screened power cable (or alternative metal sheath) will result in a severe degradation of the screened cables performance at high frequencies and increase the possibility of EMC problems. The screened motor cable should only contain the phase and earth (PE) conductors of one ZENER 8000 and the associated motor. Do not include other conductors inside the screen.

Specific information for the EMC compliant installation of each chassis size is provided on pages 10 - 14.

Wiring materials for EMC compliance

The EMC related properties of the shielded power cable used between the ZENER 8000 and motor will have a significant impact on the overall EMC result achieved in any given installation. The EMC performance of an installation will usually be dominated by the lowest performance section of the ZENER 8000 to motor cabling. For this reason it is imperative that appropriate material (including cable glands/terminators) is used in every part of this cabling. There is a wide range of materials available, and these may be generally categorised as follows:

	Category	Technical Data	Comment	
1	Screened cable material from reputable manufacturers	Technical data will be available to allow assessment of the performance of the material against specific criteria	The manufacturer's claimed data can generally be relied on, provided that the proper installation and termination practices are strictly adhered to.	\checkmark
2	Generic materials with well understood EMC properties For example, screwed steel conduit and MIMS cable	The technical performance of these materials is well understood by analysis from basic principles. Specific data has been reported in reputable engineering research journals.	These materials generally offer very high performance, provided that the proper installation and termination practices are strictly adhered to.	\checkmark
3	Material without specific EMC performance data. Armoured cables and flexible conduit systems fall into this category when there is no EMC performance data provided. Note that there are high performance, fully EMC specified examples of these materials available which would make them part of category 1	None. Assessment of the likely performance by visual inspection is difficult and unreliable	These materials represent a high risk category because the EMC performance is simply unknown. Apparently similar materials may have widely differing EMC performance. In general, there is no control of the EMC properties during design or manufacture because this is not the intended application.	×

Chassis A (1-11Amp) IP30 EMC Installation

Chassis A (1-16Amp) IP66 EMC Installation

Chassis B (23 - 57Amp) EMC Installation

Chassis C (82 - 170Amp) EMC Installation

Chassis D (175 - 490Amp) EMC Installation

EIA/RS-485 Communications Wiring

The ZENER 8000 communications port is EIA/RS-485 compliant and is isolated from ground and other circuits. This communications port is used by BACnet MS/TP and Modbus RTU protocols.

The communications system (communications cable, ZENER 8000 and other devices) needs to operate reliably in a potentially electrically noisy environment. For best performance and to reduce the risk of network failure, we recommend the following:

Best practice

Best practice for EIA/RS-485 communications requires 3 conductors and a shield. It is frequently discussed in terms of being a two wire network, but this is not the case.

- Two conductors are used to carry the EIA/RS-485 data as a differential voltage signal. These wires should ideally be twisted together so that any magnetically induced interference voltage will occur equally in both conductors and be rejected by the differential nature of the EIA/RS-485 interface circuit.
- The third conductor is used to keep the common connection (marked as terminal "C" in ZENER 8000) in all the communications interfaces at the same potential, that is, keep the common mode voltage at each interface within the limits specified by the standard.
- The Shield is connected to earth/ground at one end² only and provides protection against capacitive coupling to nearby cables and other electrical noise sources.

One arrangement that meets these requirements using generic materials is as follows:

- Use a standard two pair shielded instrumentation cable. Internally, this will have a total of 4 conductors, physically arranged as two twisted pairs surrounded by an aluminium wrapper as a screen. A bare "drain wire", in contact with the aluminium wrapper, makes an electrical connection to the screen.
- One pair is used for the data signals. The other pair is used in parallel as the common wire. The screen (drain wire) is connected to ground at one end only.

² Why one end only? Because there will be voltage differences between various ground points in an electrical installation that contain significant amounts of electrical noise and occasionally significant power frequency voltages during electrical fault events. We don't want these voltages to cause a current in the communications cable screen (because it would then induce a voltage in the cable conductors inside), so we ground the screen at one point only.

Terminating resistors

For best performance with long cable runs and high data rates a terminating resistor should be fitted at each end of the cable run. Values of 100 or 120 Ohms are commonly used, connected between the A and B terminals of the first and last devices on the cable run. For convenience, the ZENER 8000

EIA/RS-485 interface incorporates a 120 Ohm terminating resistor that is controlled by menu item G167 TERMINATOR. A terminator should not be fitted to, or selected at, intermediate devices on the communications cable. The built in 120 Ohm terminating resistor will be automatically disconnected whenever the ZENER 8000 is not powered.

The purpose of the terminator is to supress electrical reflections (echo) that may occur on a long communications cable where the time for the signal to travel the length of the cable becomes significant compared to the rise time of the signalling pulses. In more compact installations, this will not be an issue and the system may benefit from the slightly higher signal levels that result from terminating resistors not being fitted.

Typical EIA/RS-485 wiring arrangement

General

- Use twisted pair shielded communications cable.
- Connect EIA/RS-485 common terminals in addition to data conductors.
- A linear wiring scheme (daisy chain) is preferred over a star arrangement or one with stubs.
- The cable should have its shield connected to ground at one end only (earthing recommended at the computer / controller end).
- Avoid laying communication cables adjacent to power cabling and wiring. If not possible utilise the best separation of communication cabling and power cabling. Communication cables should cross power cables at right angles..
- The EIA/RS-485 standard allows a total of 32 standard load units on a network segment. Each ZENER 8000 interface is 0.5 standard load units, allowing a master device and at least 62 ZENER 8000 drives. Network loading for other equipment may vary check with the equipment manufacturer.

Shortcuts

From time to time we are asked if all this is really necessary and perhaps pointing out some functional installation installed in some lesser way. Will it work? Can it be made to work? The short answer is basically yes, The downside is that compromise arrangements tend to be a source of frustration with issues like setups that work during a bench test but troublesome in the field. There is also some equipment that doesn't have an accessible common connection. For these compromise situations – ask us – we can almost always find a creative solution!

Plug-in Option Board Wiring

A maximum of 2 option boards may be installed in either the left or right slot. Some applications require the extended features option fitted in the left slot.

Option Board	Installation / Location	Max.
Extended Features	Left &/or right. left preferred/recommended	2x
Relay Expansion	Left &/or right. Right preferred/recommended	2x
Thermistor Only	Left &/or right. Right preferred/recommended	2x
Ethernet Modbus TCP	Left &/or right. Right preferred/recommended	1x

0VDC 44

70 NO

71 COM

72 NC 73 NO

74 COM

46 NO

47 COM

NC 75

Option Board: Relay Expansion (LEFT)

Option Board: Thermistor Only (LEFT)

Thermistor Input

RELAY 1

RELAY 2

Resistive Load 5A 250VAC/30VDC Inductive Load 1.5A 250VAC/30VDC

Refer to the option instruction sheet for detailed installation instructions.

Option fitted in left slot shown above.

Тор	Row Ter	minals
51	D1	Digital Input 1
53	D2	Digital Input 2
55	D3	Digital Input 3
57	D4	Digital Input 4
59	DO+	Digital Output
61	DO-	400mA @ 48VDC 400mA @ 30VAC
Botto	m Row T	erminals
52	AI +	a
54	AI -	- Analogue Input
56	AO +	
58	AO -	Analogue Output
60	TH+	
62	TH-	- Thermistor Input
Loop	Power S	upply
63	+24V	100000000 1000 1000
64	0VDC	Maximum 20mA
Ontio	on Boar	d: Relay Expansion (RIG
put	JII Doui	

80	NO	
81	COM	RELAY 1
82	NC	Resistive Load 5A 250VAC/30VDC
83	NO	Inductive Load 1.5A 250VAC/30VDC
84	COM	RELAY 2
85	NC	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一

- 1		
 66	NO	Thermister Input
 67	COM	- Thermistor Input

Note:

Inputs & outputs on the main control board and option boards are identified by unique terminal numbers.

Eg. AI (32,34)

Is the analogue input terminal 32 & 34.

Option boards installed in the right slot require the terminal label provided to be fitted.

M	00	1	2	4,	Ą

Ethernet network interface

An optional Ethernet network interface supporting Modbus TCP is available.

For further information, please see http://www.zener.com.au/support-8r.php

Remote mounted display

An optional remote mounted display console is available.

For further information, please see http://www.zener.com.au/support-8r.php

ZENER 8000 Start Up

T,

This manual provides basic control configuration information for the ZENER 8000 to suit more common applications. Please refer to the <u>ZENER 8000 Reference Manual IM00140</u> for a detailed explanation of each control feature, including communications protocols

Connect the input and motor power wiring in accordance with the installation information beginning on page 3. Select the terminal configuration you require. Connect the control wiring according to the appropriate Control Wiring Diagram or follow a quick setup. The ZENER 8000 is now ready to run. Before applying power ensure that rotation of the motor shaft will not cause injury or damage.

Finding your way around

When the ZENER 8000 is first powered up, the drive model and version is displayed for approximately 2 seconds. This information may also be accessed from the service menu. An example of this display is:

After a few seconds, the display will switch to show the operation display.

The operation display shows the current operating status of the ZENER 8000. A detailed description is on page 20

To continue with the setup process, just press ESC. This takes you to a menu that gives access to the various settings needed to customise your ZENER 8000.

Control Modes

The ZENER 8000 takes start/stop and speed reference signals from two groups of sources. These are designated as LOCAL and REMOTE modes. The mode in use at any time is determined by the state (on or off) of the input terminal assigned to the REMOTE function. A "remote override" function can also be configured that allows switching between local and remote modes whenever the Speed / Reference Live Display is in view by pressing the ENTER button for 5 seconds. See parameter J04 for and the <u>ZENER 8000 Reference Manual IM00140</u> for further details.

ZENER 8000 in the factory default ("out of the box") state is ready to operate in the LOCAL mode from the console buttons.

Local

In local mode, ZENER 8000 is controlled from the console (front panel) buttons. Use FWD to start and increase speed, REV to reduce speed or select reverse direction. Reverse rotation is blocked unless parameter D03 REVERSE is enabled.

Remote

In remote mode, ZENER 8000 is controlled from the control terminals. The function of each of input terminals can be assigned by a preset "application" or individually configured as required.

Operation Displays & Pushbuttons

The operational displays show the operating state of the ZENER 8000. The six operational displays are: Speed / Reference Display, Meter Display, PID / Meter Display and kWhr / Hours Run Display. Press ↔ (ENTER) to reveal each display.

Speed / Reference Display

The top line displays the operating output frequency and the second line displays the speed reference and the drive status

Meter Display

The top line displays the operating output frequency and power and the second line displays motor load and output current.

PID Display

The top line displays the process variable (PV) with its units and the second line displays setpoint variable (SV) expressed with the same units.

PID / Meter Display

The top line displays the operating output frequency and process variable (PV) and the second line displays motor load and motor speed.

BUS / PID Display

The top line displays the DC Bus voltage and process variable (PV) and the second line displays output power and output frequency (ECODRIVE8000 only).

kWhr / Hours Run Display

The top line displays the kWhrs consumed by the motor and the second line displays accumulated running time of the motor

Local Mode Operation Example

The Speed / Reference display above shows the desired output speed is 40 Hz and the motor is rotating at 25 Hz in the forward direction in local mode as indicated by the status "**FWD LOC**". Some notes:

- The ZENER 8000 is started by pressing the \blacktriangle FWD button.
- The speed reference is increased by pressing the ▲ FWD button. The motor will accelerate to this speed.
- The speed reference is decreased by pressing the ▼ REV button. The motor will decelerate to this speed.
- The ZENER 8000 may be started in reverse (if enabled) by pressing ▼ REV button.
- Pressing STOP will stop the motor or reset any trip condition.
- Press ESC to access the configuration menus

IMPORTANT! If the motor shaft rotates in the wrong direction remove the input power, wait for the ZENER 8000 to discharge and swap any two motor phase wires. Re-apply input power and select a direction by pressing ▲ FWD or ▼ REV.

Complete Menu

The broad range of motor-drive solutions requires parametric configuration changes. To gain access to configuration parameters, press ESC to show either the "Complete Menu" or a customised user menu. With factory default parameters installed pressing ESC, will show the complete menu.

To move around the menu system, press:

- Press the ▲ FWD and ▼ REV buttons to display each menu item.
- Press the ← ENTER push button to enter a sub menu or change a parameter.
- Press ESC to abandon a parameter change or exit a sub menu.
- Press ESC several times in a row to return back to the operation displays.

After applying power it is recommended that you at least go through the **B00 MOTOR**, **C00 PERFORMANCE** and **G00 INPUT/OUTPUT** menus to set up the ZENER 8000 before running the motor to prevent any unexpected motor operation. The ZENER 8000 is supplied with a link between the EN terminal and the +5V terminal. This link must always be made for the motor to run.

When exiting the menu & prompted 'SAVE CHANGES', press ENTER to save changes otherwise changes will be lost on power down. NEVER remove power while the ZENER 8000 is going through the saving process.

Setup for your application

There are two ways to set up ZENER 8000 for your specific application:

1. Select a pre-configured ZENER 'Application' and then enter a minimal list of parameters guided by a menu specific to that application. Details of the pre-configured applications begin on page 23.

OR

2. Access the *Complete Menu* and directly set the parameters necessary for your application (see page 27).

Note: Selecting a pre-configured application does not preclude further customisation by accessing the *Complete Menu* after initial setup.

What is a ZENER 'Application'

An 'Application' is firmware that aims to simplify wiring, programming and the commissioning of a Variable Speed Drive. An 'Application' programs the drive and creates new user friendly menus with the essential settings. This eliminates time consuming setups, the reading & interpretation of complex manuals and ensures all critical protection is installed & set up correctly.

Since the 'Application' programs all the ZENER 8000 parameters required and also creates a custom 'User menu' to allow the end user of the equipment to make appropriate adjustments, there is generally no reason to program additional parameters unless there is a variation to the intended operation of this 'Application'.

Each ZENER Application is documented with a wiring diagram and step by step commissioning procedure.

Loading an Application

Follow the diagram below to load an application in this case the "Basic control" application.

Applications

An "application" groups parameters together creating a short menu to summarise all the relevant parameters necessary for the task at hand. The ZENER 8000 has several applications on offer ready for service. Each application will have documentation detailing wiring and commissioning information.

Application	Description	Page No.	Item number
Basic Control	Standard Industrial terminals, 0 to 10V Remote reference	33	SW08018
Machine/JOG	Machine Drive, Start/Stop, Jog Forward & Reverse	36	SW08008
4 Speed Sel	1 of 4 Speed reference selection	51	SW08017
Pressure Ctl	Water Pumping With Automatic Pressure Control	54	SW08013
Pump PID 1	PUMP PID 1 Automatic Pressure Control	57	SW08019
Pump PID 2	PUMP PID 2 Automatic Pressure Control	61	SW08020
HVAC Fan	Supply Air Fan / Smoke Spill Fan/Return Air	42	SW08012
Stairwell Fan	Stairwell Fan, HVAC terminals	45	SW08010
Air Pressure	Auto Control Stair Pressurisation Fan	48	SW08011
Cooling Tower	Auto Control Cooling Tower Fan	39	SW08007

otaniaal a Benefico o o repencaciono

Before loading an 'Application' read the overview first to confirm it is the desired configuration and operation.

Application Menus

When an application is loaded, two new menus are created: The User menu and the Configuration menu.

Changing an Application

There are 2 steps necessary to change an application:

1. Restore factory defaults.

2. Select a new application.

Application user menu

Once an application is loaded, parameters that a user/operator may change are available in the Application user menu. Using the "부 SFEEd Sel. - 연연" application example, the diagram below shows how to access the Application user menu.

Control connections and configuration

The purpose of selecting particular control connections and setting various configuration parameters is to select the required logical and speed control functions for the particular application. The configurable items can be grouped into menus as follows:

Category/Menu	Description	
A00 Defaults	Saving custom defaults, restoring custom or factory defaults, , selecting an application, PC connection (if fitted).	
B00 Motor	Information from the motor nameplate.	
C00 Performance	Maximum and minimum speeds, acceleration rates, motor flux adjustment etc.	
D00 Protection	Current limit settings, I2t (thermal overload) etc.	
E00 Stop / Start	Choices for stopping, automatic restart options etc.	
F00 References	Choice of speed signal source to be used in local and remote modes, jog speeds.	
G00 Input / Output	Assignment of particular control functions to terminals (inputs) and relays (status outputs). This menu also includes configuration for communications, Alarms/warnings , comparators, logic blocks & timers.	
H00 PID Control	PID related parameters including pumping specific parameters such idle mode & pipe fill.	
J00 Console	Configuration of parameters relating to console operation	
S00 Service	Service related displays, logs and advanced functional settings.	

The ZENER 8000 control terminals can be configured, on an individual terminal basis, to suit a wide variety of applications. This provides enormous flexibility.

Factory default settings

The factory default terminal configuration provides for single direction control from either the terminal strip or the front panel console, as selected by a local / remote input on the terminal strip. The setup procedure for this configuration begins on page 30.

There is a menu function to restore the terminal configuration and all parameters to the factory default state should you wish to do so. See Load Factory Defaults.

Settings for your application

The function of each of the analogue inputs, digital inputs and status relays may be individually assigned from an extensive list. in addition, digital inputs may be assigned to be level or edge sensitive and there are additional internal functions including timers that are fully configurable. Many applications may be easily configured using one of the quick setup applications listed below.

Quick Setup

To assist with quick configuration of the most frequently encountered applications, there are a number of predefined applications. Terminal strip configuration and associated setup notes are provided.

Control Inputs

The ZENER 8000 is operated by a set of digital input functions designed to work with logical signals that originate external to the drive. The extensiveness of this set of functions is testament to variety of applications the ZENER 8000 can operate with.

The list of functions includes:

- 100 FWD&LATCH, 101 REV&LATCH, 102 ~STOP
- 103 FWD, 104 REV
- 105 UP, 106 DOWN
- IO7 RESET
- 108 ESO
- I09 JOGFWD, I10 JOGREV
- I11 REMOTE

Not all functions are necessary for a given application and unused functions may be turned "off". Functions that are necessary have assigned to them a physical input from the terminal strip. Review "Terminal Configurations" in the "Major Features" section of this document.

The menus within the "Digital Input Configurations" menu provide a way to map a finite set of physical digital inputs to the internal set of input functions. The simplest way to configure digital inputs is to utilise one of the pre-existing configurations from the **G01 DI config** menu. Otherwise a custom configuration can be organised where each function has a physical input terminal assigned to it. In most cases the inputs levels and edges are available for selection. For example <u>digital input **D1** is found at terminal **2** and is identified as **D1(2)**. The choices are:</u>

Selection	Input Truth
D1(2)	Active <u>high level</u> is selected
~D1(2)	Active <u>low level</u> is selected
/D1(2)	Active <u>rising edge</u> is selected
D1(2)\	Active <u>falling edge</u> is selected

Selecting Standard Input Configuration

G01 DI config >Standard

Available Choices:

HVAC Power up/start Forward/Reverse Machine drive 1 Machine drive 2 Machine drive 3 Custom

Standard Industrial

- Press ← once to begin configuration selection.
- Use the ▲/ ▼ buttons to view the choices.
- Press d to confirm the choice. **ESC** to abandon the change.

G01 DI config Standard ndustria Forward/ Machine Machine Machine up/start Reverse drive 3 drive 1 2 Custom **Function** HVAC Powel drive D3(4) EN(6) D2(3) **100 FWD&LATCH** D2(3) D2(3) OFF D2(3) OFF **I01 REV& LATCH** OFF OFF OFF OFF OFF D3(4) Not specific. Refer to each 102 ~STOP D2(3) D1(2) EN(6) D1(2) D1(2) OFF D1(2) functional assignment **103 FWD** OFF OFF OFF OFF OFF D1(2) OFF **104 REV** OFF OFF OFF OFF OFF OFF D2(3) **IO5 UP** OFF OFF OFF OFF OFF OFF D3(4) **106 DOWN** OFF OFF OFF OFF OFF OFF D4(5) **107 RESET** /D1(2) /EN(6) /EN(6) OFF OFF OFF OFF OFF **108 ESO** D3(4) OFF OFF OFF OFF OFF **I09 JOGFWD** OFF OFF OFF OFF OFF D3(4) D3(4) **I10 JOGREV** OFF OFF OFF OFF OFF D4(5) OFF **I11 REMOTE** D4(5) D4(5) EN(6) D4(5) D4(5) EN(6) EN(6)

For each configuration the digital sources are:

Essential Services Override (Fire mode)

There are circumstances in some applications for which it is desirable to disable certain of the protective features of the ZENER 8000. These are situations where continued operation has a higher priority than preventing damage to the MSC-3 or associated motor. A typical example is a building air conditioning application in which a fan is required to operate as part of a smoke clearance system. Various standards, for example, AS/NZS 1668.1:1998: The use of ventilation and air conditioning in buildings - Fire and smoke control in multi-compartment buildings require that all thermal protection be disabled during operation in a smoke clearance mode and equipment allowed, if necessary, to run to destruction. The ZENER 8000 provides a special mode, Essential Services Override (ESO), to give effect to these requirements.

Operation in ESO requires a control terminal to be configured for the ESO function and that this terminal to be connected to +5V (terminal 1) whenever ESO operation is required. During ESO operation the ZENER 8000 is forced to run with protection disabled. See IM00140 for further details.

WARNING regarding Essential Services Override

The Essential Services Override (ESO) feature provides a "run to destruction" mode of operation for applications that justify this approach. For applications in which this approach is not mandatory, the safety and other implications of the ESO operating mode should be carefully considered in the light of alternative approaches before choosing to use the ESO functionality of the ZENER 8000. It is fundamental to the ESO mode of operation that all protection against overheating of the ZENER 8000 and the associated motor is disabled. This may represent a fire or other hazard. Damage to the ZENER 8000 due to overheating during ESO operation is not covered by warranty.

Setup using DEFAULT CONFIGURATION

Overview: The default configuration provides single direction operation from either local (using operator console) or remote control (using external controls) and a speed signal source. Selection between the local & remote operation is by digital input 4 (terminal 5). The functionality of all I/O terminals can be easily modified. Refer to STEP 4 for settings that must be entered and common parameters that may require changing.

The following assumes no option board is fitted. Option boards may be fitted for additional I/O.

Typical Connections

This section shows the typical configurations applicable to a wide range of applications.

STEP 1. Complete the power wiring according to the instructions from page 6 & check motor direction in local mode. To operate in Local mode, remove any wire in terminal 5 (D4) and use the operator console.

STEP 2. Choose your <u>start/stop</u> control method from the control wiring diagram and wire as shown.

You can alter between different control methods using the digital inputs. Select the appropriate control wiring from the control wiring diagram. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as required.

STEP 3. Choose your <u>speed reference</u> and connect it as shown.

i. Speed control from an external potentiometer:

ESC to menu>

Down to G00 INPUT/OUTPUT, Enter> Down to G02 AI(10,11), Enter> G028 AI Config, ENTER>, Adjust G028 for input signal 0-5V Enter to save> ESC to run display Also save on exit when prompted, press ENTER.

ii. Preset speed

ESC to menu>

Down to F00 REFERENCES, Enter> F01 REMOTE REF, ENTER> Enter to edit & change to F100 PRESET 1, Enter> Enter to set your desired speed, Enter to save>, ESC to run display Also save on exit when prompted, press ENTER.

No speed reference wiring is necessary.

iii. Speed control from an external signal

ESC to menu>

Down to G00 INPUT/OUTPUT, Enter> Down to G02 Al(10,11), Enter> G028 Al Config, ENTER>, Adjust G028 for the type of input signal, (0-10V, 0-5V, 4-20mA or Custom) Enter to save> ESC to run display. Also save on exit when prompted, press ENTER.

iv. Speed control from operator Console

(although the start/stop command is given by digital inputs, this allows the speed to be adjusted manually using the console, UP/DOWN buttons.)

ESC to menu> Down to F00 REFERENCES, Enter > F01 REMOTE REF, Enter> Enter to change to CONSOLE, Enter to save> Also save on exit when prompted, press ENTER. No speed reference wiring is necessary

Using the digital inputs you can alter between different speed references. Refer to the <u>ZENER 8000 reference</u> <u>manual IM00140</u>.

Main Control Board

Main Control Board

0-5V / 0-10V or Custom

STEP 4. Follow the instructions on page 19-21 for ZENER 8000 start up and how to navigate the menus. Set the parameters according to the table below. Alternative values may be used to suit the application.

Ref.	Menu	Menu Item	Suggested Setting
1	B00 MOTOR	B01 MOTOR VOLTS	Motor nameplate voltage
		B02 MOTOR AMPS	Motor nameplate amps
		B03 MOTOR HZ	Motor nameplate frequency
		B04 MOTOR RPM	Motor nameplate RPM
2	C00 PERFORMANCE	C03 RAMP	C030 ACCEL TIME = 10 sec (default)
			C031 DECEL TIME = 10 sec (default)
3	D00 PROTECTION	D02 I2t Thermal overload	Motor nameplate current
4	E00 STOP/START	E0 Coast to stop	Enabled (Default) or Disabled
5	FOO REFERENCES	F01 REMOTE REF	AI(10,11) or PRESET or CONSOLE as selected in Step 3
6	G00 INPUT/OUTPUT	G01 Input fxn CFG	100 FWD & LATCH = D3(4) (default)
			I02 ~STOP = D2(3) (default)
			IO7 RESET = D1(2) (default)
			I11 REMOTE = D4(5) (default)
7	G00 INPUT/OUTPUT	G03 RL1	G030 RL1 Signal = RUN (default)
		G04 RI2	G040 RL2 Signal = TRIP (default)

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Setup using APPLICATION 'Basic Control' {SW08018}

Overview: This application is for quick setup based on a simple configuration using default control terminals and commonly used parameters. This is an extension of the 'Default Configuration' but creates a unique menu with just the common parameters required.

Features include but not limited to:

- Selection of Speed Reference source
- Accel & Decel Times
- Minimum Speed
- Coast or ramp to stop
- Relays configured for RUN and TRIP operation.
- The full range of ZENER 8000 features and functions remain available.

STEP 1. Complete the power wiring according to the instructions from page 4 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 2. Load the application "Basic Control" (SW08019)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and create dedicated menus with only the parameters required.

Config & User Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

Overload current 40.0 A

Motor RPM 1465

Remote Reference AI(10,11)

Accel Time 10.0 Secs This screen displays the value of the motor's name plate current. Note the default value is model size dependent.

This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.

This screen displays the value of the motor's name plate Speed in RPM. This is for display purposes only.

This screen displays the source of the speed reference. The default is analogue input 0-10VDC. AI(10,11) is the Analogue Input terminal 10 & 11. The default signal type is 0-10Vdc. This can be modified in menu 'G00 Input/Outputs >> Analogue Input Configurations.

For a potentiometer AI(10,11) must be set for 0-5VDC.

This screen displays the time to accelerate from 0 to 50Hz.

Decel Time 10.0 Secs	This screen displays the time to decelerate from 50 to 0Hz.
Minimum Speed 0 Hz	This screen displays the minimum speed in Hz.
Coast to stop Disabled	This screen displays the mode when stopping. Choose between coasting to stop (Enabled) or ramp to stop (Disabled).

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Select the desired control method from the control wiring diagram. Remove power, ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & User menus created:

Menu	Parameter	Default
CONFIG & USER	Rated motor amps	**
CONFIG & USER	Overload current	**
CONFIG & USER	Motor RPM	1465
CONFIG & USER	Remote Ref.	AI(10,11)
CONFIG & USER	Accel Time	10.0 sec
CONFIG & USER	Decel Time	10.0 sec
CONFIG & USER	Minimum Speed	0 Hz
CONFIG & USER	Coast to stop	Disable

Parameters automatically programmed:

Menu Ref	Parameter
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus

Setup using APPLICATION 'Machine/JOG' {SW08008}

Overview: This application is for a typical industrial process that requires start/stop with the ability to jog the machinery in both directions.

Features include but not limited to:

- Individual jog forward and jog reverse speed references.
- Remote potentiometer normal operating speed reference.
- Relays configured for RUN and TRIP operation.
- The full range of ZENER 8000 features and functions remain available.

Control Wiring:

STEP 1. Complete the power wiring according to the instructions from page 6 & check motor direction in local mode. To operate in Local mode, remove any wire in terminal 5 (D4) and use the operator console. (This assumes factory settings and no application has been loaded). Do not install control wiring until STEP 4.

STEP 2. Load the application "Machine/ JOG" (SW08008)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and create dedicated menus with only the parameters required.

Config & User Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

Jog FWI 10.0	D speed 0 %	

Jos	REU	speed
1	0.0	2

Rated mot	ion amps
40.0	A
Overload	current
40.0	A

Motor	RPM	
1,	465	

Accel Time 10.0 Secs

Decel Time 10.0 Secs This screen displays the preset jog forward speed required for the machine in % of maximum rated speed (default 50Hz).

This screen displays the preset jog reverse speed required for the machine in % of maximum rated speed (default 50Hz).

This screen displays the value of the motor's name plate current. Note the default value is model size dependent.

This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.

This screen displays the value of the motor's name plate speed in RPM. This is for display purposes only.

This screen displays the time to accelerate from 0 to 50Hz.

This screen displays the time to decelerate from 50 to 0Hz.

Coast to stop Disabled

This screen displays the mode when stopping. Choose between coasting to stop (Enabled) or Ramping to stop (disabled).

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & User menus created:

Menu	Parameter	Default
CONFIG & USER	Jog FWD Speed	10.0Hz
CONFIG & USER	Jog REV Speed	10.0Hz
CONFIG	Rated motor amps	**
CONFIG	Overload current	**
CONFIG	Motor RPM	**
CONFIG	Accel Time	10sec
CONFIG	Decel Time	10sec
CONFIG	Coast to stop	Disabled

Parameters automatically programmed:

Menu Ref	Parameter
D03 Reverse	Enabled
G01 Digital Input Config	Custom terminals
100 FWD & latch	D2(3)
I02 ~Stop	D1(2)
I07 Reset	D1(2)
109 JOGFWD	D3(4)
110 JOGREV	D4(5)
111 REMOTE	ON
G028 AI(10.11)	0-5V
F040 JOG FWD REF	Preset 1. 10%
F050 JOG REV REF	Preset 2. 10%
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus.

Setup using APPLICATION 'Cooling Tower' {SW08007}

Overview: This application is for a typical 'Cooling Tower Fan' with configuration for temperature control system using an external water temperature sensor and the ZENER 8000 internal PID controller. For open loop control use APPLICATION 'HVAC Fan'.

System Requirements:

- Extended Features Option Board (AQ/AF08001) is fitted in the left hand side position.
- External water temperature sensor with linear output (default for 4-20mA)

STEP 1. Complete the power wiring according to the instructions from page 4 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 2. Load the application "Cooling Tower" (SW08007)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and create dedicated menus with only the parameters required.

Config. Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

Decel Time 10.0 Secs

This screen displays the time to decelerate from 50 to 0Hz.

NOTE: This application activates the auto restart function (ie. 5 restarts)

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & menus created when the application is loaded

The following is for reference only. Refer to STEP 3 for configuration.

Config & User menus created

Menu	Parameter	Default
CONFIG & USER	Rated motor amps	**
CONFIG & USER	Overload current	**
CONFIG & USER	Current Limit	**
CONFIG & USER	Motor RPM	1465
CONFIG & USER	Temp. Scale (°C)	100.0
CONFIG & USER	Set Temp. (°C)	50.0
CONFIG & USER	Accel Time	10.0 secs
CONFIG & USER	Decel Time	10.0 secs

Parameters automatically programmed.

Menu Ref	Parameter
E030 Auto Restart	5
F010 Remote Ref.	PID-A Output
F1001 Preset Unit	PID-A units
G01 Digital Input Config	HVAC terminals
G108 Config AI(32,34)	4-20mA
H01 PB%	-300%
H06 SV Choice	Preset 1
H07 PV Choice	AI(32,34)
H08 Units	°C
J02 Display	PID/Meter
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus.

Setup using APPLICATION 'HVAC Fan' {SW08012}

Overview: This application is for a typical 'Supply Air Fan', 'Smoke Spill fan' or 'Return Air fan'. This configuration provides speed control from an external source during normal operation, a preset speed in ESO (fire) mode and local control from the front control panel. Default speed reference is 0-10Vdc.

Features include but not limited to:

- Digital input for run and optional selection for remote operation or local operation from front console.
- Analogue input for speed reference (Default 0-10Vdc)
- Relays configured for RUN and TRIP operation.
- ESO (fire) mode operation from digital input
- The full range of ZENER 8000 features and functions remain available.
- Communication with Building Management Systems

STEP 1. Complete the power wiring according to the instructions from page 4 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4. Any wire in the ESO input must also be removed to operate in local mode.

STEP 2. Load the application "HVAC Fan" (SW08012)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

ESO Speed 50.0 Hz	This screen displays the operating speed when in ESO (fire) mode. This is activated by Input D3(4).
Rated Motor Amps 40.0 A	This screen displays the value of the motor's name plate current. Note the default value is model size dependent.
Overload current 40.0 A	This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.
Current Limit 46 A	This screen displays the value for the current limit setting. This value should be at least FLC x 1.15 for a fan/pump type load.
Motor RPM 1465	This screen displays the value of the motor's name plate speed in RPM. This is for display purposes only.

NOTE: This application activates the auto restart function (ie. 5 restarts)

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded

The following is for reference only. Refer to STEP 3 for configuration.

Config menus created (No User menu)

Menu	Parameter	Default
CONFIG	ESO Speed (Hz)	50.0
CONFIG	Rated motor amps	**
CONFIG	Overload current	**
CONFIG	Current Limit	**
CONFIG	Motor RPM	1465

Parameters automatically programmed.

Menu Ref	Parameter
E030 Auto Restart	5
C030 Accel Ramp	60 secs
C031 Decel Ramp	60 secs
F010 Remote Ref.	AI(10,11) - default 0-10Vdc
F1051 Preset Units	RUN UNITS
G01 Digital Input Config	HVAC terminals
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing the CONFIG menu.

Setup using APPLICATION 'Stairwell Fan' {SW08010}

Overview: This application is for a 'Stairwell Fan' with speed control & reference from an external source. The default speed reference is 0-10Vdc. The pressure control (PID) is performed by the building management system or external PID controller. This configuration operates in ESO mode whenever operating.

Features include but not limited to:

- Analogue input for speed reference (Default 0-10Vdc)
- Relays configured for RUN and TRIP operation (default).
- ESO (fire) mode operation from digital input
- The full range of ZENER 8000 features and functions remain available.
- Communication with Building Management Systems

IM00124A

45

STEP 1. Complete the power wiring according to the instructions from page 6 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4. Any wire in the ESO input must also be removed to operate in local mode.

STEP 2. Load the application "Stairwell Fan" (SW08010)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

NOTE: This application activates the auto restart function (ie. 5 restarts)

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & User menus created:

Menu	Parameter	Default
CONFIG	Rated motor Amps	**
CONFIG	Overload current	**
CONFIG	Current Limit	**
CONFIG	Motor RPM	1465

Parameters automatically programmed:

Menu Ref	Parameter
E030 Auto Restart	5
G01 Digital Input Config	HVAC terminals
ESO Ref	AI(10,11) - default 0-10Vdc
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus

Setup using APPLICATION 'Air Pressure' {SW08011}

Overview: This application is for a 'Stairwell fan' configured to use internal PID controller to maintain stairwell air pressure. The default speed reference is 4-20mA from a pressure transducer. The pressure control (PID) is performed by the ZENER 8000 internal PID controller. This configuration operates in ESO mode whenever operating.

Features include but not limited to:

- Analogue input for speed reference (Default 4-20mA)
- Relays configured for RUN and TRIP operation (default).
- ESO (fire) mode operation from digital input
- The full range of ZENER 8000 features and functions remain available.
- Communication with Building Management Systems

System Requirements:

- Extended Features Option Board (AQ/AF08001) is fitted in the left hand side position.
- External air pressure transducer (default for 4-20mA)

Control Wiring

STEP 1. Complete the power wiring according to the instructions from page 6 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

This screen displays the pressure units to be displayed

This screen displays the operating pressure of the PID controller

This screen displays the pressure of the transducer at full output eg. At 20mA.

This screen displays the value of the motor's name plate current. Note the default value is model size dependent.

This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.

This screen displays the value for the current limit setting. This value should be at least FLC x 1.15 for a fan/pump type load.

This screen displays the value of the motor's name plate speed in RPM. This is for display purposes only.

NOTE: This application activates the auto restart function (ie. 5 restarts)

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & user menus created

Menu	Parameter	Default
CONFIG	Pressure Units	Ра
USER & CONFIG	Set Pressure	30.0
CONFIG	Transducer Scale	100.0
CONFIG	Rated Motor Amps	**
CONFIG	Overload Current	**
CONFIG	Current Limit	**
CONFIG	Motor RPM	1465

Parameters automatically programmed.

Menu Ref	Parameter
E030 Auto Restart	5
F030 ESO Reference	PID-A output
F1001 Preset 1	PID-A units
G01 Digital Input Config	HVAC terminals
G108 AI(32,34) Config	0-10Vdc
H06 SV choice	Preset 1
H07 PV Choice	AI(32,34)
J02 Default Display	PID/meter display
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus

Setup using APPLICATION '4 Speed Sel' {SW08017}

Overview: This application configures the ZENER 8000 to operate at 4 selectable preset speeds.

System Requirements:

- Extended Features Option Board (AQ/AF08001) is fitted in the left hand side position.
- External selector switch or voltage free contacts.

PRESS 'ENTER' for 5 seconds to toggle between LOCAL & REMOTE. See page 19 for more details on this feature.

In "local" the start & stop control is from the front console. In "remote", the start & stop control is from the terminal strip. The source of the speed reference in both modes may be independently configured to come from a wide variety of sources including the terminal strip, console, preset values or internal logic functions.

STEP 1. Complete the power wiring according to the instructions from page 4 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 2. Load the application "4 Speed Sel." (SW08017)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

This screen displays the time to accelerate from 0 to 50Hz.

This screen displays the time to decelerate from 50 to 0Hz.

This screen displays the minimum operating speed.

This screen displays the mode when stopping. Choose between coasting to stop (Enabled) or ramping to stop (Disabled).

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded

The following is for reference only. Refer to STEP 3 for configuration.

Config & user menus created .

Menu	Parameter	Default
USER & CONFIG	1 st Speed	70.0
USER & CONFIG	2 nd Speed	80.0
USER & CONFIG	3 rd Speed	85.0
USER & CONFIG	4 th Speed	90.0
CONFIG	Rated motor amps	**
CONFIG	Overload current	**
CONFIG	Motor RPM	1465
CONFIG	Accel Ramp	10.0
CONFIG	Decel Ramp	10.0
CONFIG	Min speed (Hz)	0.0
CONFIG	Coast to stop	Disabled

Parameters automatically programmed.

Monu Pof	Parameter
Wend Kei	Farameter
F060 Multispeed mode	1
F061 User ref 1	F100 Preset 1
F062 User ref 2	F101 Preset 2
F0630 Selector 1	D1(31)
F0631 Selector 2	D2(33)
F0632 Selector 3	D3(35)
F0630 Selector 4	D4(37)
F010 Remote Ref	Reference Selector
J031 Run Scale	100.0
J032 Run Units	% Speed
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus.

Setup using APPLICATION: 'Pressure Ctl' {SW08013}

Overview: This application is for a simple water pressure control system using the internal PID controller. The default speed reference is 4-20mA from a pressure transducer. The pressure control (PID) is performed by the ZENER 8000 internal PID controller. The set point is adjustable in the user & config menus. For more advance automatic pressure control systems & protection refer to APPLICATIONS: PUMP PID 1 & PUMP PID 2.

System Requirements:

- Extended Features Option Board (AQ/AF08001) is fitted in the left hand side position.
- Water pressure transducer (default for 4-20mA)

PRESS 'ENTER' for 5 seconds to toggle between LOCAL & REMOTE. See

page 19 for more details on this feature

STEP 1. Complete the power wiring according to the instructions from page 4 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 2. Load the application "Pressure Ctl" (SW08013)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. & User Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

This screen displays the pressure units to be displayed

This screen displays the operating pressure of the PID controller

This screen displays the minimum operating speed for the pump. Check manufacturer specifications for the Pump.

This screen displays the pressure of the transducer at full output eg. At 20mA.

This screen displays the value of the motor's name plate current. Note the default value is model size dependent.

This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.

This screen displays the value of the motor's name plate speed in RPM. This is for display purposes only. When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required. For parameters not mentioned refer to the <u>ZENER 8000</u> reference manual IM00140. If the PID operation is unstable refer to page 67 for a 'Guide to tuning PID Control'

End of procedure...

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & user menus created

Menu	Parameter	Default
CONFIG	Pressure Units	kPa
USER & CONFIG	Set Pressure	500.0
CONFIG	Min Speed	0.0
CONFIG	Transducer Scale	1000.0
CONFIG	Rated motor amps	**
CONFIG	Overload Current	**
CONFIG	Motor RPM	1465

Parameters automatically programmed.

Menu Ref	Parameter
C030 Accel Ramp	2secs
C031 Decel Ramp	2secs
E030 Auto Restart	5
F010 Remote Reference	PID-A output
F1001 Preset 1	PID-A units
G108 AI(32,34) config	4-20mA
H06 SV choice	Preset 1
H07 PV Choice	AI(32,34)
J02 Default Display	PID/meter display
J04 Remote Override	Enabled

Note: Refer to page 24 for accessing CONFIG & USER menus.

Setup using APPLICATION: 'PUMP PID 1' {SW08019}

Overview: This application is for water pressure control system using the internal PID controller without 'Idle mode' (sleep). The default speed reference is 4-20mA from a pressure transducer. The pressure control (PID) is performed by the ZENER 8000 internal PID controller. The set point is adjustable in the User & Config menus. Protection includes loss of signal, high pressure & low pressure and pipe fill timeout.

For a more advance pressure control systems with automatic idle function, bore level control, input for a flow switch & additional protection refer to APPLICATION PUMP PID 2.

System Requirements:

- Extended Features Option Board (AQ/AF08001) is fitted in the left hand side position.
- Pressure transducer (default for 4-20mA)

Some important points to note before proceeding:

- It is critical that the transducer feedback and the PV displayed is checked against a pressure gauge.
- Ensure that the motor, pump & pipework (and non-return valve) are in good working order.
- Separate & independent high & low pressure protection is employed to prevent economic loss.

STEP 1. Complete the power wiring according to the instructions from page 6 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 2. Load the application "PUMP PID 1" (SW08019)

This will take you direct to the 'CONFIG MENU'.

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. & User Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

Rated motor amps 40.0 A	This screen displays the value of the motor's name plate current. Note the default value is model size dependent.
Overload current 40.0 A	This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.
Motor RPM 1465	This screen displays the value of the motor's name plate speed in RPM. This is for display purposes only.
Transducer Scale 1000.0 kPa	This screen displays the pressure of the transducer at full output eg. At 20mA.
Set pressure 500.0	This screen displays the operating pressure of the PID controller.

Min Speed (Hz) 0.0 Hz	This screen displays the minimum operating speed for the pump. Check manufacturer specifications for the Pump.
Low Trip Level 250.0 kPa	This screen displays the level for a low pressure trip
Low Trip Time 30	This screen displays the trip time for a Low pressure trip in seconds.
High Level Trip 800.0 kPa	This screen displays the trip time for a High pressure trip
Pipe Fill Øff	This screen displays whether pipe Fill is disabled or operates by pressure.
Fill Speed 40 Hz	This screen displays the speed to run at when in Pipe Fill mode.
Fill to Level 300.0 kPa	This screen displays the pressure to change from pipe fill to PID operation.
Fill Time 40.0 secs	This screen displays the time allowed for Pipe Fill to reach the 'Fill level' before a trip occurs.

When the menu cycles to the first parameter the setup is complete. Press ESC to exit until prompted 'SAVE CHANGES'. Press ENTER to save changes and wait until the process has completed.

STEP 4. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram.

STEP 5. Test the operation and make changes required.

- Ensure the pressure feedback (PV) is equal to the pressure indicated on the pressure gauge.
- Ensure the PID responds to changes and operates in a stable manner. If the PID operation is unstable refer to the 'Guide to tuning PID Control' on page 67.

For parameters not mentioned refer to the ZENER 8000 reference manual IM00140.

End of procedure...

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & User menus created:

Parameters automatically programmed.

Menu	Parameter	Default
CONFIG	Rated Motor Amps	**
CONFIG	Overload Current	**
CONFIG	Motor RPM	1465
USER & CONFIG	Set Pressure (kPa)	500.0
CONFIG	Transducer Scale (kPa)	100.0
CONFIG	Min Frequency	0.0
CONFIG	Low Trip level	250.0
CONFIG	Low Trip Time	30 secs
CONFIG	High Level Trip	800.0kPa
CONFIG	Pipe Fill	Off
CONFIG	Fill Speed (Hz)	40.0
CONFIG	Fill to Level	300kPa
CONFIG	Fill Time	40.0 secs

Menu Ref	Parameter	
C030 Accel Ramp	3secs	
C031 Decel Ramp	3secs	
C032 S time	0.5sec	
C033 Dual Ramp	Enabled	
F010 Remote Reference	PID-A output	
F1001 Preset 1	PID-A units	
G230 UA1	Trip always active	
G231 UA1 Signal	PV-A Over	
G233 UA1 Text	HI PRESSURE	
G106 AI(32,34) Lo CMP	2.0mA	
G240 UA2 trip active	With run cmd	
G241 UA2 Signal	Lo AI(32,34)	
G243 UA2 text	SIGNAL LOST	
G250 UA3 Trip Active	With loop ctl	
G251 UA3 Signal	PV A Under	
G253 UA3 text	LO PRESSURE	
G108 AI(32,34) config	4-20mA	
H01 Prop band	200%	
H06 SV choice	Preset 1	
H07 PV Choice	AI(32,34)	
H08 PID-A units	kPa	
J02 Default Display	PID/meter display	

Note: Refer to page 24 for accessing CONFIG & USER menus.

Setup using APPLICATION: 'PUMP PID 2' {SW08020}

Overview: This application is for water pressure control system using the internal PID controller with 'Idle mode' (sleep). The default speed reference is 4-20mA from a pressure transducer. The pressure control (PID) is performed by the ZENER 8000 internal PID controller. The set point is adjustable in the User & Config menus. Protection includes loss of signal, high pressure & low pressure and bore level. Digital inputs are provided for the connection of a bore level switch and a flow switch. The flow switch input provides an additional trigger for idle mode from a flow switch.

Application Guide Available: Document IM00127 (for more detailed explanation and setup guide)

System Requirements:

- Extended Features Option Board (AQ/AF08001) is fitted in the left hand side position.
- Pressure transducer (default for 4-20mA)
- Optional 'Flow Switch' & Bore level switch

Application Guide : Document IM00127

www.zener.com.au/images/im00127

An application guide is available for this Application due to its complexity. We strongly recommend you download the document or contact Zener for a copy. The guide will provide more details about this application and a step by step instruction to commissioning the ZENER 8000.

Some important points to note before proceeding:

- It is critical that the transducer feedback and the PV displayed is checked against a pressure gauge.
- Ensure that the motor, pump & pipework (and non-return valve) are in good working order and that pressure holds when all field taps are turned off.
- Separate & independent high & low pressure protection is employed to prevent economic loss.
- Bore level switch is installed to provide protection against dry run. If not used ensure the link is in place.
- A flow switch may be required for more direct 'idle' control or where the set point maybe varied and affects the performance of the 'load %' method. If a flow switch is not used ensure the link is in place.

The following is a summary of the setup.

STEP 1. Complete the power wiring according to the instructions from page 4 & check motor direction in local mode. To operate in Local mode remove any wire in terminal 5 (D4) and use the operator console. Do not install control wiring until STEP 4.

STEP 2. Load the application "PUMP PID 2" (SW08020)

STEP 3. When this application is loaded it will program all the parameters required for the wiring configuration and dedicated menus with only the parameters required.

Config. & User Parameters

Adjust the following parameters:

Always exit the menu and save changes before removing power.

Rated motor amps 40.0 A	This screen displays the value of the motor's name plate current. Note the default value is model size dependent.
Overload current 40.0 A	This screen displays the value of the overload current setting for the motor. Note the default value is model size dependent.
Motor RPM 1465	This screen displays the value of the motor's name plate speed in RPM. This is for display purposes only.
Transducer Scale 1000.0 kPa	This screen displays the pressure of the transducer at full output eg. At 20mA.
Set pressure 500.0 kPa	This screen displays the operating pressure of the PID controller

STEP 4. To check the transducer feedback: Operate the ZENER 8000 in local mode. Start & Increase the speed using the UP button to the operating pressure on the gauge. Check the PV reading on the ZENER 8000 equals the pressure on the gauge. If not the same rectify the problem do not proceed with the setup.

STEP 5. Remove power and ensure the ZENER 8000 is completely powered down and install control wiring as per control wiring diagram. Apply power and operate the ZENER 8000 to check the following.

STEP 6. Check the PID operation: Operate the ZENER 8000 in remote mode (PID). Check the PID controller operation ensuring that the pressure builds to the set pressure and stabilises around that pressure. If unstable, over shoots or slow to respond refer to the PID tuning guide on page 67.

The following should be adjusted after the transducer feedback (PV) has been checked and the PID operation has been checked and tuned (ie. stable operation).

STEP 7. Find the Idle Values: Operate the pump and close all discharge valves (No flow). The pressure should remain constant and the speed & load % reduce. Quickly note the speed and Load % values and stop the pump. There are 2 methods to detect 'No flow'; Load % method and using an external flow switch. A flow switch will also operate in conjunction with the 'Load %' method. Refer to the application guide (IM000127) or reference manual (IM000140) for more explanation on 'Idle' Mode operation.

Enter the idle parameters.

The CONFIG menu can be accessed from the A00 DEFAULTS selection of the Complete Menu (see page 21)

```
Min Speed (Hz)
0.0 Hz
```

Idle Threshold 20.0% This screen displays the minimum operating speed for the pump. Check manufacturer specifications for the Pump. Must be set to allow the idle threshold to be achieved.

This screen displays the '% Load' threshold for the 'time before Idle' to go into 'Idle Mode'. This needs to be set above the Load at no flow under all conditions. To switch off this idle function adjust to 0%. Time before Idle 5.0 secs

Resume at PV 25% below SV This screen displays the 'time before idle'. This time also applies to a flow switch if used.

This screen displays the pressure to wake from 'Idle Mode' as a % below the set point.

STEP 8. Check the idle function operates under all conditions. Open and close dicharge valves and field taps at required setpoint and check idle function & PID response. Adjust as required.

STEP 9. Adjust remaining parameters.

Low Trip Level 250.0 kPa
Low Trip Time 30
Hiah Level Trip 800.0 kPa
Pipe Fill Øff
Fill Speed 40 Hz
Fill to Level 300.0 kPa
Fill Time 40.0 secs
Low Bore timeout 0.0 secs

This screen displays the level for a low pressure trip

This screen displays the trip time for a Low pressure trip

This screen displays the trip time for a High pressure trip

This screen displays whether pipe Fill is disabled or operates by pressure.

This screen displays the speed to run at when in Pipe Fill mode.

This screen displays the pressure to change from pipe fill to PID operation.

This screen displays the time allowed for Pipe Fill to reach the 'Fill level' before a trip occurs.

This screen displays the restart time after a low bore situation. A bore level switch is required for this function. If not used ensure a link is fitted between terminal 1 (+5V) and terminal 37.

STEP 10. Test the protection & operation under all possible conditions and make any changes required.

- Ensure the pressure feedback (PV) is equal to the pressure indicated on the pressure gauge.
- Ensure the PID responds to changes and operates in a stable manner. If the PID operation is unstable refer to the 'Guide to tuning PID Control' on page 67.
- Ensure the ZENER 8000 goes into idle mode (sleep) when no flow.
- Ensure all protection required is installed & operating correctly.

For parameters not mentioned refer to the ZENER 8000 reference manual IM00140.

Parameters configured & Menus created when the application is loaded.

The following is for reference only. Refer to STEP 3 for configuration.

Config & User menus created:

Menu	Parameter	Default
CONFIG	Rated Motor Amps	**
CONFIG	Overload Current	**
CONFIG	Motor RPM	1465
CONFIG	Transducer Scale (kPa)	1000
USER & CONFIG	Set Pressure (kPa)	500
CONFIG	Min Speed	0.0
CONFIG	Idle Threshold %	20%
CONFIG	Time before Idle	5 secs
CONFIG	Resume at PV	25% below SV
CONFIG	Low Trip level	250.0 kPa
CONFIG	Low Trip Time	30 secs
CONFIG	High Level Trip	800.0kPa
CONFIG	Pipe Fill	Off
CONFIG	Fill Speed (Hz)	40.0
CONFIG	Fill to Level	300kPa
CONFIG	Fill Time	40.0 secs
CONFIG	Low Bore Timeout	O sec

Parameters automatically programmed.

Menu Ref	Parameter	
C030 Accel Ramp	3 sec	
C031 Decel Ramp	3 sec	
C032 S time	0.5 sec	
C033 Dual Ramp	Enabled	
F010 Remote Reference	PID-A output	
F1001 Preset 1	PID-A units	
G106 AI(32,34) Lo CMP	2.0 mA	
G108 AI(32,34) config	4-20mA	
G230 UA1	Always	
G231 UA1 Signal	PV-A Over	
G233 UA1 Text	HI PRESSURE	
G240 UA2 trip active	Run Command	
G241 UA2 Signal	Lo AI(32,34)	
G243 UA2 text	SIGNAL LOST	
G250 UA3 Trip Active	PID Closed Loop	
G251 UA3 Signal	PV A Under	
G253 UA3 text	LO PRESSURE	
G260 UA4 Trip Active	RUN Command	
G261 UA4 Signal	Pipe Fill TMR	
G262 UA4 delay	1 secs	
G263 UA4 text	Fill T.O	
G271 Warn input	~TMR 1	
G272 Warning Text	"-DRY-	
G01 DI config	Custom	
IO2 `STOP	Logic Block 1	
I201 LB1 Input 2	D2(3)	
I202 LB1 Input 3	TMR 1	
I203 LB1 m0:7	LLLHLLLH	
G071 T1 Mode	Delay ON init	
G0720 T1 Input 1	ON	
G0721 T1 input 2	D4(37)	
H01 Prop band	200%	
H06 SV choice	F100 Preset 1	
H07 PV Choice	AI(32,34)	
H08 PID-A units	kPa	
H102 RESUME	By PV Threshold	
H107 No Flow Sel	~D3(35)	
J02 Default Display	PID display	

Note: Refer to page 24 for accessing CONFIG & USER menus.

PID Parameters explanation

The Proportional gain: amplifies the difference between the set point reference and feedback signals. The **H01 Prop. Band** value is the proportion of input required to generate 100% at the output of the PID control. For example **H01 Prop. Band** is 300.0%, the proportional gain is 100/300 = 0.333. That is 3 units of input will generate 1 unit of output. The higher the % value, the lower the 'proportional gain'.

The integral time: The integral action adds a corrective component to reduce a constant error difference between set point and feedback signals. The greater the error, the quicker the gain increases. The **H02 Integ. time** value sets the time to 'repeat' the error difference between set point and feedback signals - This assumes the Proportional gain is equal to 1.

A <u>low</u> **H02** Integ. time value attempts to regulate the process variable quickly. However if excessively low, over shooting and under shooting will be more prominent.

A <u>high</u> **H02 Integ. time** value diminishes over shooting and under shooting. However regulation takes longer to achieve.
Guide to PID Tuning

Step	Problem	Acti	Action	
1.	The plumbing is set for typical flow but the system responds too slowly	1.1 1.2 1.3 1.4 1.5	Stop the ZENER 8000 & pump Halve the value of H01 Proportional band (avoid adjustments below 10%) Stop & restart the ZENER 8000 & pump. Observe the time it takes to reach pressure (or reacts to changes) Repeat if the response is slow. Keep halving H01 Proportional band until overshoots or starts to oscillate then proceed to step 2.	
2.	The system starts to overshoot or oscillate	2.1 2.2 2.3 2.4	Stop the ZENER 8000 Double the value H01 Proportional band Observe the time it takes to reach pressure (or reacts to changes) Repeat if the system still overshoots or oscillates proceed to step 3.	
3.	The system still responds slowly (after adjusting H01 Proportional band)	3.1 3.2 3.3	Halve the H02 Integral Time Observe the time it takes to reach the pressure (or reacts to changes) Repeat if the response is still slow (half Again) otherwise proceed to step 4."	
4.	The system starts to overshoot or oscillate (after adjusting H01 Proportional band)	4.1 4.2 4.3	Double the H02 Integral Time Observe the time it takes to reach the pressure (or reacts to changes) Repeat if the system still overshoots or oscillates (half Again)	

Additional detailed information

This manual provides basic control configuration information for the ZENER 8000 to suit more common applications. Please refer to the <u>ZENER 8000 Reference Manual IM00140</u> for a detailed explanation of each control feature, including communications protocols

Communications Protocols

Please refer to the <u>ZENER 8000 Reference Manual IM00140</u> for details of the communications protocols supported.

Display Messages

The ZENER 8000 displays a variety of messages on the second line of its display to indicate the drive status.

These messages may be divided into two types, trip messages and run messages.

The ZENER 8000 will protect itself from a variety of fault conditions. When one of these conditions is experienced the ZENER 8000 will trip, shut down the motor and display one of the following messages. The message will be displayed until the fault is cleared and a rest signal is applied.

Trip Message	Description
EXTERNAL ALARM	User defined trip input activated
THERMISTOR HOT	The thermistor wired to the Extended Features card indicates the motor is over heated
THERMISTOR SHORT	The thermistor wired to the Extended Features card is short circuit
SUPPLY FAIL	There is a problem with the input power supply. One phase is either partially or totally missing and motor operation will be impaired
BRAKE SHORT	Either an Over Current or a Ground Fault has been detected on the dynamic brake resistor terminals
OVER TEMPERATURE	The ZENER 8000 is too hot
EARTH FAULT	An earth leakage fault has been detected on the motor terminals
I2t OVERLOAD	An I2t trip has occurred
CHARGE FAULT	An abnormal condition associated with the DC bus slow charge control has been detected.
DC BUS LOW	The DC Bus voltage has fallen below its minimum threshold to operate the motor
POWER FAILURE	One or more phases of the input power supply are either low or missing
OVER CURRENT	The output current has exceeded the ZENER 8000's intermittent output current rating
INV OVER TEMP	One or more power devices have reached the limit of their thermal protection rating
RELAY OPEN	The internal bus charge relay has failed to operate correctly
OVER VOLTAGE	The DC Bus voltage has exceeded its maximum value
OUTPUT SHORT	An output short circuit has been detected. This is caused by either an Over Current or a Ground Fault on the motor terminals

Run Message	Description
EXT WARN	User defined warning input activated
V LIMIT	The motor is regenerating or the input voltage is too high
C LIMIT	The motor is drawing its maximum overload current
P LIMIT	The motor's absorbed power exceeds the ZENER 8000 rating when operating from a single phase supply
ESO FWD	The ZENER 8000 is operating in Essential Services Override mode with FWD rotation
ESO REV	The ZENER 8000 is operating in Essential Services Override mode with REV rotation
OFF LINE	The ZENER 8000 has not been given a terminal strip run command in line contactor mode
NO AC!	The ZENER 8000 has been given a terminal strip run command but has detected no AC input voltage supply
CHARGING	The ZENER 8000 is waiting for the DC Bus capacitors to be fully charged before running the motor. This may be due to a low AC input voltage in one or all phases as well as input power conditions that do not represent a normal AC supply. This condition may occur if the ZENER 8000 is operated from a single phase supply without first enabling D05 1 Phase Inpt . A faulty charging circuit is also possible.
NOT EN	The ZENER 8000 is ON but has no enable signal so it is not able to turn a motor
IDLE REM	The ZENER 8000 is idle in remote mode
FWD REM	The ZENER 8000 is running in the FWD direction in remote mode
REV REM	The ZENER 8000 is running in the REV direction in remote mode
EN REM	The ZENER 8000 has an enable signal but no direction selected in remote mode
IDLE LOC	The ZENER 8000 is idle in local mode
FWD LOC	The ZENER 8000 is running in the FWD direction in local mode
REV LOC	The ZENER 8000 is running in the REV direction in local mode
EN LOC	The ZENER 8000 has an enable signal but no direction selected in local mode

Specifications

General				
Input Supply Voltage				
8R models	380 to 480Vac, 3ф			
8L models	208 to 240Vac, 3ф			
Input voltages have tolera	nce of -15% to +10%			
Input Frequency	48 to 62 Hz			
Output Voltage				
8R models	0 to 480Vac, 3ф			
8L models	0 to 240Vac, 3ф			
The output voltage canno	t be higher than the			
input voltage.				
o				
Output Frequency	0.1.00011			
Range				
Resolution:	0.1%			
Linearity	0.2% of max			
	frequency			
Enclosure rating				
According to model: IP30, IP54, IP66				
Environmental Rating				
Storage				
temperature	-20 to +70ºC			
Operating				
temperature	0 to 40ºC			
·	0 to 50°C (dependant			
	on load current)			
Relative	5 to 95%. Non			
humiditv	Condensing			
Altitude	0 to 1000m			
Standards Compliance				
Models marked with this				
symbol comply with the 🛛 👝				
Australian EMC Framework				
requirements				

Models marked with this symbol are listed by Underwriters Laboratories Inc and comply with UL 508C

The I²t function complies with IEC 60947-4-1 Ed. 2.0B (2000) and AS/NZS 3947.4.1:2001: Low voltage switchgear and control gear - Contactors and motor starters - Electromechanical contactors and motor starters thermal overload specification class 10A.

Local Controls

Console display 16 x 2 line backlit LCD Console buttons Fwd, Rev, Up, Down, Enter, Escape, Stop/Reset

Terminal Strip

Digital Inputs +5V & COM: 5Vdc supply; 40mA max current

> D1(2)..D4(5),EN(6), D1(31)..D4(37) (left fit EF card option) D1(51)..D4(57) (right fit EF card option) Logic High: 3 to 5 Vdc Logic Low: 0 to 2 Vdc

Relays / Digital Outputs

RL1(16,17),RL2(17,18) Form A (single pole, normally open) 5A@250VaC (resistive load) 5A@30VdC (resistive load) 2A@250VaC (inductive load) 2A@30VdC (inductive load)

RL(70,71,72), RL(73,74,75) (left fit relay card option) RL(80,81,82), RL(83,84,85) (right fit relay card option) Form C (single pole, changeover) 5A@250Vac (resistive load)

5A@30Vdc (resistive load) 1.5A@250Vac (inductive load) 1.5A@30Vdc (inductive load)

$\begin{array}{c} \text{DO(39,41)} \text{ (left fit relay card option)} \\ \text{DO(59,61)} \text{ (right fit relay card option)} \\ 2\Omega \ R_{\text{ON}} \\ 400\text{mA} \ @ \ 48\text{Vdc} \\ 400\text{mA} \ @ \ 30\text{Vac} \end{array}$

Analogue Inputs Vref & COM 5Vdc Supply 5mA max current IN+, IN- (AI(10,11)), AI(32,34) (left fit EF card option) AI(52,54) (right fit EF card option) **Differential input** 0...5V, 0...10V, 4...20mA ranges 10V or 20mA max custom range ± 32V to COM common mode range Analogue Outputs AO(36,38) (left fit EF card option) AO(56,58) (right fit EF card option) **Differential output** 0...5V, 0...10V, 4...20mA ranges 10V or 20mA max custom range ± 42V to COM common mode range Loop Transducer Supply Terminals (43,44) (left fit EF card option) Terminals (63,64) (right fit EF card option) 24Vdc ± 10% 20mA maximum Short circuit protected TIA/EIA/RS-485 Interface Terminals A(12), B(13) & C(14) Isolated interface (2kV ESD) 120Ω optional line termination Internal line bias (> $100k\Omega$) User selectable bit rate & line termination **Thermistor Inputs** TH(40,42) (left fit EF card option) TH(60,62) (right fit EF card option) TH(46,47) (left fit Thermistor card option) TH(66,67) (right fit Thermistor card option) 3300Ω nom. @ T_{rated} 20Ω short circuit detection **User Parameters** Motor Voltage 200 to 900V The output voltage cannot exceed the input voltage **Motor Current** 25 to 180% of continuous general purpose rating **Motor Frequency** 30 to 200Hz

	Motor Speed	500 to (60 x Motor
	Minimum Frequency Maximum Frequency Acceleration time Deceleration time S time Flux Plus Slip Comp Audible Frequency ³ :	frequency) RPM 0 to 195Hz 5 to 200Hz 0.5 to 600 sec 0.5 to 600 sec 0.01 to 40 sec 0 to 200% 0 to 150% of slip speed 2 to 16kHz
	Current Limit	18 to 100% of overload
	l ² t overload	18 to 100% of max cont rating
	I2t Zero Hz	18 to 100% of max cont rating
	I2t cnr Hz Drive Stopping	2 to 200Hz Ramp to stop Coast to stop Dynamic braking (optional)
Auto Re	start	
	Number of restarts Reset time	0 to 20 0.1 to 10 minutes
Referen	ces Analog input Console reference Presets Motorised Potentiomete Communications sources	r
Commu	nications (included as sta Modbus RTU (EIA/RS-485 BACnet MS/TP (EIA/RS-48	ndard) 5) 85)
Commu	nications (optional) Modbus TCP (Ethernet)	

³ This is the frequency apparent in motor acoustic noise. The audible frequency is automatically reduced according to heat sink temperature and load current.

Model	Continuous Current for General Purpose Rating (A) Typically variable torque applications	Continuous Current for Extended Duty Rating (A) Typically constant torque applications	Over Load Current (A)
8*001	2.0	2.0	4.7
8*003	3.6	3.1	4.7
8*005	5.0	4.2	6.3
8*007	7.2	6.0	9.0
8*011	10.8	8.9	13.4
8*016	16.0	13.5	20.3
8*023	22.5	19.1	28.6
8*030	30.1	25.6	38.4
8*040	40.3	34.1	51.1
8*057	57.0	48.3	72.5
8R082	82.0	69.5	104.3
8R109	109	92.4	138.6
8R140	140	119	178.0
8R170	170	133	199.0
8R220	220	161	242.0
8R315	315	231	346.5
8R390	390	286	429.0
8R490	490	359	539.0

Output Current Specifications

* L or R designates input voltage range.

These currents apply to all ranges ZENER 8000 at an ambient temperature of 40°C independent of the input voltage. ZENER 8000 may be applied at higher ambient temperatures at reduced ratings. Please consult the factory for ratings for ambient temperatures above 40°C.

Input supply and terminal torques

Model	Max. Supply Short Circuit Rating (Amps RMS Symmetrical)	Max. Fuse Size	Fuse Class	Max. Wire Size	Max. Tightening Torque
240V					
8L001	18,000A, 240V	20	J	6mm ²	1.76Nm
8L003	18,000A, 240V	20	J	6mm ²	1.76Nm
8L005	18,000A, 240V	20	J	6mm ²	1.76Nm
8L007	18,000A, 240V	20	J	6mm ²	1.76Nm
8L011	18,000A, 240V	20	J	6mm ²	1.76Nm
8L016	18,000A, 240V	20	J	16mm ²	1.76Nm
8L023	18,000A, 240V	60	Т	16mm ²	1.8Nm
8L030	18,000A, 240V	60	Т	16mm ²	1.8Nm
8L040	18,000A, 240V	60	т	16mm ²	1.8Nm
8L057	18,000A, 240V	100	Т	21mm ²	2.0Nm
480V					
8R001	18,000A, 480V	20	J	6mm ²	1.76Nm
8R003	18,000A, 480V	20	J	6mm ²	1.76Nm
8R005	18,000A, 480V	20	J	6mm ²	1.76Nm
8R007	18,000A, 480V	20	J	6mm ²	1.76Nm
8R011	18,000A, 480V	20	J	6mm ²	1.76Nm
8R016	18,000A, 480V	20	J	16mm ²	1.8Nm
8R023	18,000A, 480V	60	Т	16mm ²	1.8Nm
8R030	18,000A, 480V	60	Т	16mm ²	1.8Nm
8R040	18,000A, 480V	60	Т	16mm ²	1.8Nm
8R057	18,000A, 480V	75	Т	21mm ²	2.0Nm
8R082	18,000A, 480V	200	Т	70mm ²	13.6Nm
8R109	18,000A, 480V	200	Т	70mm ²	13.6Nm
8R140	18,000A, 480V	200	Т	70mm ²	13.6Nm
8R170	18,000A, 480V	200	Т	70mm ²	13.6Nm
8R220	18,000A, 480V	250	Т		55Nm
8R315	18,000A, 480V	400	Т	As per	55Nm
8R390	18,000A, 480V	630	Т	customer's crimp lug	55Nm
8R490	18,000A, 480V	630	Т		55Nm

• Inverse-time circuit breakers can be used provided that the let-through energy (I2t) and peak let through current (Ip) is less than that of the maximum fuse rating specified.

• Use Copper Conductors Only.

Troubleshooting Guide

Symptom	Cause	Remedy
		Check input power wiring; refer
	Input power wiring not connected	to the ZENER 8000 Electrical
Front Display doos not illuminato	properly.	Installation Diagram. Measure
Front Display does not indiminate.	Input voltage not within	the input voltage at the ZENER
	specification.	8000 input terminals. Check with
		specifications.
	Enable signal is not active	Check that the EN terminal is
	Ellable signal is not active.	connected to +5V. Check that the
		ENABLED message is displayed.
Motor does not rotate when UP	ZENER 8000 is in REMOTE	Check that if you have a remote
button on the Console is pressed.		terminal it is not at +5V with
		respect to COM.
	Spood is set to minimum	Increase speed by holding down
	speed is set to minimum	the UP button.
		Check control wiring to terminals
		and the terminal functions
	Incorrect control signal wiring.	assigned. Refer to Control Wiring
		Diagrams and Terminal
		Configurations.
	Enable signal is not active.	Check that the EN terminal is
		connected to +5V. Check that the
		ENABLED message is displayed.
		Check that your remote terminal
Motor does not rotate when	ZENER 8000 is in LOCAL	is at +5V with respect to DIG
remote START signal is activated		СОМ
		Check that either a FWD or a REV
		terminal has been assigned and
		that it is at +5V with respect to
	A direction has not been selected.	DIG COM.
		If the reverse direction is selected
		ensure that reverse is enabled
		from the Protection menu.
	Speed signal is not correctly	Check the REMOTE speed source
	connected	in the References menu. Ensure
		that this source is not at zero.
		This is a normal operating mode
		for the ZENER 8000. When the
		load is being accelerated
Motor does not accelerate in the		too fast, the ZENER 8000 limits
time set by the ACCEL ramp and C	Current limit circuit is operating.	current drawn by the motor by
LIMIT message appears .		extending the acceleration ramp
		time. A faster Accel time is not
		possible with this Current Limit
		setting. Increase the ACCEL time

Symptom	Cause	Remedy
		until the C LIMIT message
		disappears
		Increase CURRENT LIM value so
		that the ZENER 8000 is not
	CURRENT LIM set too low.	prematurely limiting current.
		Check that the motor does not
		overheat with the new setting.
		Check the actual load is within
	Motor mechanically overloaded.	the motor's capacity at the
		required speed.
	Motor shaft jammed	Check the mechanical drive
		system.
C LIMIT message appears	Fault in motor or motor wiring	Check that motor is wired
continuously		correctly
	Incorrect motor voltage selected	Enter correct MOTOR VOLTAGE
		from the MOTOR menu
	Incorrect motor frequency	Enter correct MOTOR
	selected	FREQUENCY from the MOTOR
		menu.
	FLUX PLUS is set too high.	Reduce the FLUX PLUS setting.
		This is a normal operating mode
		for the ZENER 8000. When the
Motor does not decelerate in the	Voltage limit circuit is operating	load is being decelerated too fast,
time set by the DECEL ramp and V		the ZENER 8000 limits the voltage
LIMIT message appears.		regenerated by the motor by
		extending the deceleration ramp
		time. Increase the DECEL time to
		make this message disappear.
V LIMIT message appears	Input voltage has exceeded	See ZENER 8000V General
continuously.	maximum rating.	Specifications for input voltage
,		ratings.
	Short circuit on motor terminals.	Check motor & wiring to motor
OUTPUT SHORT message appears		terminals.
	Earth Fault on motor terminals	Check motor & wiring to motor
		terminals.
OVER CURRENT message appears	Motor current was greater than the	Check drive and motor current
	ZENER 8000's maximum current.	ratings.
		See general specification and
	Input voltage has exceeded	check the input is within ratings.
	maximum ratings.	check input supply for voltage
OVER VOLTAGE message appears.		transients. Fix the external
		Source.
	Motor is overhauling.	Ensure load cannot overdrive the
Any of these messages appear:	Ventilation problem.	Ensure operating amplent
		temperature is within

Symptom	Cause	Remedy
Tj OVERTEMP		specification. Check fans are
HOT INTERNAL AIR		rotating freely and there is no
Ths OVERTEMP		build-up of dust or debris in
T* OVERTEMP		blades. Visually examine the
		heatsink fins for build-up of dust
(* is any digit 18)		and debris.
		Check the ZENER 8000
	Drive is constantly overloaded.	continuous current and ambient
		temperature rating.
		Check that MOTOR NAMEPLATE
		RPM setting is equal to the motor
		rated speed. Check that
	SLIP COMP is set too high.	NAMEPLATE CURRENT setting is
		equal to the motor nameplate
		current. Reduce SLIP COMP
		setting.
Motor is unstable.	FLUX PLUS set too high.	Reduce FLUX PLUS setting.
		Enter correct MOTOR VOLTAGE
	Incorrect motor voltage selected.	from the MOTOR menu.
	Incorrect motor frequency	Enter correct MOTOR
		FREQUENCY from the MOTOR
		menu.
	CURRENT LIMIT is set too low.	Increase CURRENT LIMIT setting.
		Do not run the motor heavily
	Motor is running at low speeds for	loaded at low speeds for long
	long times	periods unless the motor has
	long times.	been suitably de-rated or is force
		cooled.
	Motor damaged or incorrectly	Check the motor and motor
Excessive motor neating.	wired.	wiring for faults.
	Incorrect motor voltage selected	Enter correct MOTOR VOLTAGE
	meoneet motor voltage selected.	from the MOTOR menu.
	Incorrect motor frequency	Enter correct MOTOR
	solosted	FREQUENCY from the MOTOR
		menu.

Your ZENER 8000 Setup Notes

Photocopy or complete in pencil

Site designator:

Parameter	User	Default		
A00 DEFAULTS ->				
A06 Application:		<none></none>		
BOO MOTOR 🗲				
B01 MOTOR VOLTS		*		
B02 MOTOR AMPS		*		
B03 MOTOR Hz		*		
B04 MOTOR RPM		*		
COO PERFORMANCE 🗲				
C01 MIN Hz		0		
C02 MAX Hz		*		
CO0 PERFORMANCE				
C030 ACCEL TIME		10.0 secs		
C031 DECEL TIME		10.0 secs		
C032 S TIME		0.01secs		
C033 DUAL RAMP		DISABLED		
C00 PERFORMANCE				
CO40 FLUX PLUS		0.00%		
C041 HiSpd Flux+		DISABLED		
C05 SLIP COMP %		0.00%		
C06 AUDIBLE FREQ		AUTO		
D00 PROTECTION ->	•			
D01 CURRENT LIM		*		
D00 PROTECTION D02 I2t	1	•		
D020 I2t		*		
D021 I2t zero Hz		*		
D022 I2t CNR Hz		10.0 Hz		
D00 PROTECTION ->				
D03 REVERSE		DISABLED		
D04 DC INPUT		DISABLED		
D05 1 Phase Inpt		DISABLED		
DO0 PROTECTION DO6 SKIP SPEED				
D060 SKIP SPEED		30 Hz		
D061 SKIP RANGE		0 Hz		
D07 Rotation		Normal		
E00 STOP/START ->	-			
E01 COAST STOP		DISABLED		

Date:

Serial No:

Parameter	User	Default
E030 ARs ALLOWED		0
E031 AR CLR TIME		1200 secs
E00 STOP/START 🗲		
E04 Reset by PF		DISABLED
E05 Motor Resync		DISABLED
E06 LC CONTROL		DISABLED
E00 STOP/START • E07 Solar Supply		
E0701 SOLAR FXN		DISABLED
E070 RUN MODE		OFF
E071 Restart DC		550V
E072 Restart DLY		60 secs
E073 Lo Radiance		OFF
E074 Hi Radiance		OFF
E075 Vmp Volts		*
E0751 MPPT step		2V/sec
E0752 MPP P step		*
E076 Display var		PV-A
E077 Lo Solar t		3 secs
E078 SFC time		1 minute
E079 SFC Ext sel		OFF
E00 STOP/START → E08Mains-Sync		
E080 Mains Sync		DISABLED
E081 Phase comp		0.75msec
F00 REFERENCES		•
F010 REMOTE REF		AI(10,11)
F011 REMOTE Inpt ⁴	(see I11)	D4(5)
F00 REFERENCES → F01 REMOTE CFG → F012 USER MODE 1		
F0120 MODE1 REF		AI(10,11)
F0121 MODE1 Inpt		OFF
F0122 MODE1 text		"U MODE 1"
F0123 MODE1 cfg		Reference only
F00 REFERENCES → F01 REMOTE CFG → F013 USER MODE 2		
F0130 MODE2 REF		AI(10,11)
F0131 MODE2 Inpt		OFF
F0132 MODE2 text		"U MODE 2"
F0133 MODE2 cfg		Reference only
FOO REFERENCES 🗲		

⁴ Alias name for the parameter

Parameter	User Default		
F02 LOCAL		CONSOLE	
FOO REFERNCES			
F03 ESO Config		F105 Preset 6	
F031 ESO Input ⁴	(see I08)	OFF	
F032 ESO RAMP	(000 100)	10.0 secs	
FOO REFERENCES			
→ F04 JOGFWD CFG		F10F Procet 6	
F040 JOGFWD REF	(222 100)	F105 Preset 6	
F041 JOGFWD Inpt	(see 109)	UFF	
➔ F05 JOGREV CFG			
F050 JOGREV REF		F105 Preset 6	
F051 JOGREV Inpt ⁴	(see I10)	OFF	
F00 REFERENCES F06 Reference Selector CF	G		
F060 Sel Method		Multiplexed	
F061 USER REF 1		AI(10,11)	
F062 USER REF 2		CONSOLE	
FOO REFERENCES			
F06 Reference Selector CF →F063 Selector Input Cor	ufigs		
F0630 Selector 1		OFF	
F0631 Selector 2		OFF	
F0632 Selector 3		OFF	
F0633 Selector 4		OFF	
F0634 Selector 5		OFF	
F0635 Selector 6		OFF	
F0636 Selector 7		OFF	
F0637 Selector 8		OFF	
F00 REFERENCES → F07 Al fxn Cfg			
F070 AI Function		Average fxn	
F071 AI in 0 sel		ZERO_REF	
F072 AI in 1 sel		ZERO_REF	
F073 AI in 2 sel		ZERO_REF	
F00 REFERENCES F08 CONSOLE CFG			
F080 PERSISTENT		DISABLED	
F081 STOP RESET		DISABLED	
FOO REFERENCES ->			
F09 COMMS PRESET		60.00%	
FOO REFERENCES			
➡ F10 PRESETS		0/	
		⁷⁰	
		10.00%	
F1001 PRESET2 units		%	
F101 PRESET2		20.00%	
F1011 PRESET3 units		%	
F102 PRESET3		30.00%	
► F10 PRESETS (continued)			
F1021 PRESET4 units		%	
F103 PRESET4		40.00%	
F1031 PRESET5 units		%	
F104 PRESET5		50.00%	

Parameter	User	Default					
F1041 PRESET6 units		%					
F105 PRESET6		60.00%					
F1051 PRESET7 units		%					
F106 PRESET7		70.00%					
F1061 PRESET8 units		%					
F107 PRESET8		80.00%					
G00 INPUT/OUTPUT	'n						
G01 DI config		Standard Indust					
G00 INPUT/OUTPUT → Analogue Input Configural → G02 AI(10,11) Config. → G028 AI config = "c	tions custom"						
G020 Input Type		Volts					
G021 MIN Input		0.0 V					
G022 MAX Input		10.0 V					
G023 Ref @MIN in	0.00%						
G024 Ref @MAX in		100.00%					
G00 INPUT/OUTPUT → Analogue Input Configurat → G02 AI(10,11) Config.	tions						
G025 Hi Compare Level		8 V					
G026 Lo Compare Level		2 V					
G027 Hysteresis		2.00%					
G028 AI config		0 to 10V					
G00 INPUT/OUTPUT → Relay Output Configuratio → G03 RL1(15,16)	ns						
G030 RL1 Signal		RUN					
G031 RL1 Sense		DIRECT					
G032 RL1 TON		0 secs					
G033 RL1 TOFF		0 secs					
G00 INPUT/OUTPUT → Relay Output Configuratio → G04 RL2(17,18)	ns						
G040 RL2 Signal		TRIP					
G041 RL2 Sense		DIRECT					
G042 RL2 TON		0 secs					
G043 RL2 TOFF		0 secs					
G00 INPUT/OUTPUT → Relay Output Configurations → G030 RL1 Signal = "UNDER SPEED" OR → G040 RL2 Signal = "UNDER SPEED"							
G050 UNDER SPEED		20.00%					
G00 INPUT/OUTPUT → Relay Output Configurations → G030 RL1 Signal = "OVER SPEED" OR → G040 RL2 Signal = "OVER SPEED"							
G051 OVER SPEED		80.00%					
G00 INPUT/OUTPUT → Relay Output Configuratio → G030 RL1 Signal = "%L0 → G040 RL2 Signal = "%L0	G00 INPUT/OUTPUT → Relay Output Configurations → G030 RL1 Signal = "%LOAD WARNING" OR → G040 RL2 Signal = "%LOAD WARNING"						
G053 %LOAD UNDER		10%					
G054 %LOAD OVER		100%					
G00 INPUT/OUTPUT Timers & Compare Config	gurations						
→ Timer 1 (G070G0723)							

Parameter	User	Default						
G070 T1 Interval		1 secs						
G071 T1 mode		Delay ON						
G0720 T1 Input 1		OFF						
G0721 T1 Input 2		OFF						
G0722 T1 Reset		OFF						
G0723 T1 Logic		Standard						
G00 INPUT/OUTPUT → Timers & Compare Configurations → Timer 1 (G070G0723) → G0723 T1 Logic = "custom"								
T1 IN1,2,3 m0:7 IN:		LLLLLHL						
T1 IN1,2,3 m0:7 Reset:		LHLHLHLH						
G00 INPUT/OUTPUT → Timers & Compare Config → Timer 2 (G073G075	gurations 3)							
G073 T2 Interval		1 secs						
G074 T2 mode		Delay ON						
G0750 T2 Input 1		OFF						
G0751 T2 Input 2		OFF						
G0752 T2 Reset		OFF						
G0753 T2 Logic		Standard						
G00 INPUT/OUTPUT → Timers & Compare Configurations → Timer 2(G073G0753) → G0753 T2 Logic = "custom"								
T2 IN1,2,3 m0:7 IN:		LLLLLHL						
T2 IN1,2,3 m0:7 Reset:		LHLHLHLH						
G00 INPUT/OUTPUT → Relay Output Configuratio → G08 DO(39,41) (Extended)	ns nded Features Ca	rd, left side fit)						
G080 DO Function		RUN						
G081 DO Sense		DIRECT						
G082 DO TON		0 secs						
G083 DO TOFF		0 secs						
G00 INPUT/OUTPUT Thermistor Configurations	(Extended Featu	res Card. left side fit)						
G09 TH(40,42)		DISABLED						
G00 INPUT/OUTPUT → Analogue Input Configural → G10 Al(32,34) Config. (→ G108 Al config = "c	tions Extended Feature custom"	s Card, left side fit)						
G100 Input Type		Volts						
G101 MIN Input		0.0V						
G102 MAX Input		10.0V						
G103 Ref @MIN in		0.00%						
G104 Ref @MAX in		100.00%						
G00 INPUT/OUTPUT → Analogue Input Configurat → G10 AI(32,34) Config. (tions Extended Feature	s Card, left side fit)						
G105 Hi Compare Level		8V						
G106 Lo Compare Level		2V						
G107 Hysteresis		2.00%						
G108 AI config		0 to 10V						
G00 INPUT/OUTPUT	rations							
→ G11 AO(36,38) Config. (Extended Features Card, left side fit)								

Parameter	User	Default
G116 AO config		0 to 5V
G111 AO Source		FREQUENCY
G112 Signal min		0.0Hz
G113 Signal max		50.0Hz
G00 INPUT/OUTPUT → Analogue Output Configur → G11 AO(36,38) Config. → G116 AO config = "	ations (Extended Featur 'custom"	es Card, left side fit)
G110 Output Type		Volts
G114 MIN Output		0.0V
G115 MAX Output		5.0V
G00 INPUT/OUTPUT → Relay Output Configuratio → G12 DO(59,61) (Exter	ns nded Features Ca	rd, right side fit)
G120 DO Function		RUN
G121 DO Sense		DIRECT
G122 DO TON		0sec
G123 DO TOFF		0sec
G00 INPUT/OUTPUT	(Extended Features	Card right side fit)
G13 TH(60,62)	Extended readines	DISABLED
G00 INPUT/OUTPUT → Analogue Input Configurat → G14 AI(52,54) Config. (I → G148 AI config = "c	ions Extended Feature ustom"	s Card, right side fit)
G140 Input Type		Volts
G141 MIN Input		0.0V
G142 MAX Input		10.0V
G143 Ref @ MIN in		0.00%
G144 Ref @ MAX in		100.00%
G00 INPUT/OUTPUT → Analogue Input Configurat → G14 AI(52,54) Config. (1)	ions Extended Feature	s Card, right side fit)
G145 Hi Compare Level		8V
G146 Lo Compare Level		2V
G147 Hysteresis		2.00%
G148 AI config		0 to 10V
G00 INPUT/OUTPUT → Analogue Output Configur → G15 AO(56,58) Config.	ations (Extended Features)	Card, right side fit)
G156 AO config		0 to 5V
G151 AO Source		FREQUENCY
G152 Signal min		0.0Hz
G153 Signal max		50.0Hz
G00 INPUT/OUTPUT → Analogue Output Configur → G15 A0(56,58) Config. (→ G156 AO config = "	ations Extended Feature 'custom"	es Card, right side fit)
G150 Output Type		Volts
G154 MIN Output		0.0V
G155 MAX Output		5.0V
G00 INPUT/OUTPUT Communication Configur	ation	
G160 Protocol		none

Parameter	User	Default						
G00 INPUT/OUTPUT	•							
Communication Configuration G160 Protocol ≠ "none"								
		FROM						
G166 RUN SIGNALS		TERMINALS						
G168 Comms Lost Time		10sec						
G169 Serial No.		G1000000						
G00 INPUT/OUTPUT Communication Configur G160 Protocol = "MOI G160 Protocol = "BAC	ation DBUS RTU" OR net MS/TP"							
G161 bits/sec		19200						
G162 Parity		Even parity						
G163 MAC/Dev ID		1						
G167 Terminator		DISABLED						
G00 INPUT/OUTPUT → Communication Configur → G160 Protocol = "BAC	ation net MS/TP"							
G164 Dev Inst.	1							
G165 Max Masters		127 masters						
G00 INPUT/OUTPUT → Communication Configuration → G160 Protocol = "MODBUS/TCP" (Ethernet card fitted)								
G1630 IP address		192.168.0.180						
G1631 IP mask		255.255.255.0						
G00 INPUT/OUTPUT → Relay Output Configuratio → G17 RL(70,71,72) (Re	ns lay Expansion Ca	rd, left side fit)						
G170 RLY Signal		RUN						
G171 RLY Sense		DIRECT						
G172 RLY TON		Osec						
G173 RLY TOFF		Osec						
G00 INPUT/OUTPUT → Relay Output Configuratio → G18 RL(73,74,75) (Re	ns lay Expansion Ca	rd, left side fit)						
G180 RLY Signal		RUN						
G181 RLY Sense		DIRECT						
G182 RLY TON		Osec						
G183 RLY TOFF		Osec						
G00 INPUT/OUTPUT → Relay Output Configuratio → G19 RL(80,81,82) (Re	ns lay Expansion Ca	rd, right side fit)						
G190 RLY Signal		RUN						
G191 RLY Sense		DIRECT						
G192 RLY TON		Osec						
G193 RLY TOFF		Osec						
G00 INPUT/OUTPUT → Relay Output Configuratio → G20 RL(83,84,85) (Re	ns lay Expansion Ca	rd, right side fit)						
G200 RLY Signal		RUN						
G201 RLY Sense		DIRECT						
G202 RLY TON		Osec						
G203 RLY TOFF		Osec						
G00 INPUT/OUTPUT	(Thermistor ontion	card, left side fit)						
G21 TH(46,47)		DISABLED						

Parameter	User	Default			
G00 INPUT/OUTPUT					
→ Inermistor Configurations	(Thermistor option	DISABLED			
G00 INPUT/OUTPUT		0.07.0120			
 Warning & Alarm Configu G23 USER ALARM 1 	urations				
G230 Alarm mode		ALWAYS			
G231 Alarm input		OFF			
G232 Alarm delay		1 sec			
G233 Alarm text		UA1: ALARM			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G24 USER ALARM 2	urations				
G240 Alarm mode		ALWAYS			
G241 Alarm input		OFF			
G242 Alarm delay		1 sec			
G243 Alarm text		UA2: ALARM			
G250 Alarm mode		ALWAYS			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G25 USER ALARM 3	urations				
G251 Alarm input		OFF			
G252 Alarm delay		1 sec			
G253 Alarm text		UA3: ALARM			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G26 USER ALARM 4	urations				
G260 Alarm mode		ALWAYS			
G261 Alarm input		OFF			
G262 Alarm delay		1 sec			
G263 Alarm text		UA4: ALARM			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G27 WARNING 1	urations				
G270 Warn mode		ALWAYS			
G271 Warn input		OFF			
G272 Warn text		- <uw1>-</uw1>			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G28 WARNING 2	urations				
G280 Warn mode		ALWAYS			
G281 Warn input		OFF			
G282 Warn text		- <uw2>-</uw2>			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G29 WARNING 3	urations				
G290 Warn mode		ALWAYS			
G291 Warn input		OFF			
G292 Warn text		- <uw3>-</uw3>			
G00 INPUT/OUTPUT → Warning & Alarm Configu → G30 WARNING 4	urations				
G300 Warn mode		ALWAYS			
G301 Warn input		OFF			
G302 Warn text		- <uw4>-</uw4>			

Parameter	User	Default						
G00 INPUT/OUTPUT								
 ➡ Timers & Compare Configurations ➡ Signal Compare (G400G407) 								
G400 CMP Signal		FREQUENCY						
G401 CMP Scale		50 Hz						
G402 CMP Ref		F100 Preset 1						
G403 Threshold 1		20%						
G404 Threshold 2		40%						
G405 Threshold 3		60%						
G406 Threshold 4		820%						
G407 CMP mode		WINDOW						
H00 PID Control PID-A Controller								
H01 Prop. Band		300.00%						
H02 Integ. time		2.00 sec						
H03 Diff time		0.00 sec						
H04 +Opt clamp		100						
H05 –Opt clamp		0						
H06 SV choice		CONSOLE						
H07 PV choice		AI(10,11)						
H08 PID Units (selection)		%						
H081 PID Units		%						
H09 PID Scale		100.00%						
H00 PID Control → PID-A Controller → H10 IDLE Func.								
H100 IDLE %LOAD		0%						
H101 IDLE DELAY		0 secs						
H102 RESUME		by speed ref						
H105 IDLE boost		100% of SV						
H106 Boost time		0 secs						
H107 No Flow Sel		OFF						
H00 PID Control → PID-A Controller → H10 IDLE Func. → H102 RESUME = "h	w speed ref"							
H103 RESUME Hz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 Hz						
H00 PID Control PID-A Controller H10 IDLE Func. H102 RESUME = "b	y PV threshold"							
H104 RESUME @PV		10% below SV						
H00 PID Control PID-A Controller								
H11 PV Compare H110 PV I O value		20%						
		80%						
H00 PID Control		0070						
➔ PID-A Controller ➔ H12 Pipe Fill								
H120 Fill Mode		OFF						
H121 Fill Time		0 secs						
H122 Fill Threshold		0%						
H123 Fill Ref		0 Hz						
H00 PID Control PID-A Controller H13 OutOfReg CEG								

Parameter	User	Default					
H131 OOR Thresh		10.0%					
H132 OOR Time		5 secs					
H00 PID Control PID-B Controller							
H21 Prop. Band		300.00%					
H22 Integ. time		2.00 sec					
H23 Diff time		0.00 sec					
H00 PID Control → PID-B Controller (continue)	ed)						
H24 +Opt clamp		100					
H25 –Opt clamp		0					
H26 SV choice		CONSOLE					
H27 PV choice		AI(10,11)					
H28 PID Units (selection)		%					
H281 PID Units		%					
H29 PID Scale		100.00%					
H30 PV LO value		20%					
H31 PV HI value		80%					
H00 PID Control → PID-B Controller → H32 OutOfReg CFG							
H321 OOR Thresh		10.0%					
H322 OOR Time		5 secs					
G00 INPUT/OUTPUT Digital Input Configuratio G01 DI config = "custo	n m"						
100 FWD & LATCH		D3(4)					
I01 REV & LATCH		OFF					
102 ~STOP		D2(3)					
I03 FWD		OFF					
I04 REV		OFF					
105 UP		OFF					
I06 DOWN		OFF					
I07 RESET		D1(2)					
I08 ESO		OFF					
109 JOGFWD		OFF					
I10 JOGREV		OFF					
I11 REMOTE		D4(5)					
G00 INPUT/OUTPUT → Digital Input Configuration → I20 Logic Block1							
I200 LB1 Input 1		OFF					
I201 LB1 Input 2		OFF					
I202 LB1 Input 3		OFF					
I203 LB1 m0:7		LLLLLL					
G00 INPUT/OUTPUT → Digital Input Configuration → 121 Logic Block2							
I210 LB2 Input 1		OFF					
I211 LB2 Input 2		OFF					

Parameter	User Default			
I212 LB2 Input 3		OFF		
I213 LB2 m0:7		LLLLLLL		
G00 INPUT/OUTPUT → Digital Input Configuration → 122 Logic Block3	on			
I220 LB3 Input 1		OFF		
I221 LB3 Input 2		OFF		
I222 LB3 Input 3		OFF		
1223 LB3 m0:7		LLLLLL		
G00 INPUT/OUTPUT → Digital Input Configuration → I23 Logic Block4	on			
I230 LB4 Input 1		OFF		
I231 LB4 Input 2		OFF		
I232 LB4 Input 3		OFF		
1233 LB4 m0:7	LLLLLLL			
JOO CONSOLE 🗲				
J01 Menu Lock		UNLOCKED		
J02 Def. Display		SPEED-REF DISP		
J00 CONSOLE J03 Run Display		-		
J030 Run Display Format		999.9		
J031 Run Display Scale		50		
J032 Run Display Units		Hz		
JOO CONSOLE 🗲		-		
J04 REMOTE OVRD		DISABLED		
J00 CONSOLE → G01 DI config ≠ "custom	"			
J05 LOCAL RUN EN		ON		
SOO SERVICE 🗲				
S04 FAN OVERRIDE		DISABLED		
SOO SERVICE Fault Log				
S05 PF & UV MASK		DISABLED		
SO6 PWR UP ENTRY		ENABLED		
S00 SERVICE Advanced				
S100 Load comp BW		default		
S101 OvrMod Ivl		Default		
S104 CL gain		100.0%		
S105 REGN CL fxn		ENABLED		

Mechanical Installation Information

Chassis A IP66 / NEMA 4 (1-16Amps)

CAUTION - Allow 50mm above, below and either side of the enclosure for ventilation

Chassis B (23 - 57 Amps)

CAUTION - Allow 75mm above, below and either side of the enclosure for ventilation

	Dimensions in mm - tolerance +/- 1.0mm									Weight
Models	Enclosure type	A	В	C	D	E	F	G	without choke kg	with choke kg
8*00113 8*00313 8*00513 8*00713 8*01113	Chassis A IP30 / NEMA 1	248	102	237	208	32	230	6	3.5	
8*001									7.5	8.6
8*003									7.5	8.6
8*005	Chassis A	24.0	400	226	250	4.00	207	~	7.5	8.6
8*007	IP66 / NEMA 4	310	190	236	250	108	287	6	7.5	8.6
8*011									7.5	11.3
8*016										11.5
8*023									18	23
8*030	Chassis B	450	22	2.42	400	120	126		18	23
8*040 8*057	All types	459	23	243	400	130	436	6	18	23
8 057										24

* L or R to specify supply voltage

Chassis C (82 - 170Amps)

CAUTION - Allow 100mm above, below and either side of the enclosure for ventilation

	Enclosure Dimensions in mm - tolerance +/- 1.0mm							Weight		
Model	type	А	B1	B2	С	D	E	F	G	kg
8*082	Chassis C									64
8*109	All types	715	470		290	625	330	677	12	66
8*140										70
8*170D4	Chassis C IP54	715	470		290	625	330	677	12	72
8*170D6	Chassis C IP66	715		635	290	625	330	677	12	75

* L or R to specify voltage

Chassis D Wall mount (220 – 490 Amps)

CAUTION - Allow 150mm above, below and either side of the enclosure for ventilation

	Enclosure		Dimens	ions in m	m - tolera	ance +/- 2	L.0mm		Weight
Model	type	А	В	С	D	Е	F	G	kg
8R220D4	Chassis D								220
8R315D4									240
8R390D4	mount	1225	555	525	1132	300	1185	12	280
8R490D4	(standard)								300

Chassis D with optional Floor mount (220 – 490 Amps)

CAUTION - Allow 150mm above, below and either side of the enclosure for ventilation

Model	Enclosure type	Dimensions in mm - tolerance +/- 1.0mm								Weight
		E,G	Н	Ι	J	К	L	М	Р	kg
8R220D4	Chassis D									255
8R315D4	With	As per								275
8R390D4	optional	previous page	618	459	659	475	425	13	1684	315
8R490D4	stand	4~2C								335

Transportation sizes and weights

The table below lists the approximate dimensions and weights for ZENER 8000 models in the standard packing material.

Model	Enclosure Type	Shipping Dimensions	Weight without Choke	Weight with Choke	Packaging	
8*00212	Chassis A					
8*00313	Chassis A					
8*00513	IP30 / NEMA 1	31 x 28 x 18cm	4Kg			
8*00713	(No DC Choke)					
8*01113						
8*003						
8*005	Chassis A			10Kg		
8*007	IP66 / NFMA 4	39 x 33 x 38cm	8Kg	J	Carton	
8*011						
0 011	-			12kg		
8*016						
8*023			20Kg	25.6Kg		
8*030	Chassis B	54 y 36 y 40cm	8			
8*040	All types	54 X 50 X 400m		27.5Kg		
8*057				28Kg		
8*082			48Kg	74Kg		
8*109	All types	76 x 54 x 44cm	50Kg	76Kg		
8*140			62Kg	80Kg	Pallet	
8*170	IP54	76 x 54 x 44cm		82Kg		
8*170	IP66	81 x 77 x 49cm		102Kg	Pallet box	
8R220	All Chassis D			250Kg		
8R315	All types	127 x 63 x 70cm		270Kg	Pallet box	
8R390	without			310Kg		
8R490	floor stand			330Kg		

Glossary ~STOP The logical inverse of STOP. This circuit must be closed for the ZENER 8000 to run. Control of the stop / start function by a simple contact closure (eg a start / run switch 2-wire control contact). 3-wire control Control of the stop / start function by momentary contacts, typically separate start and stop pushbuttons. This arrangement has the advantage of preventing an inadvertent restart following a power outage. COM The common terminal to which all inputs on the ZENER 8000 are referenced. AWG American Wire Gauge Console The pushbuttons and LCD display on the front of the ZENER 8000 **Constant Torque** A load characteristic in which the driving torque requirement is largely independent of speed. e.g. a horizontal conveyor DC Bus Choke An inductor connected in series with the DC bus inside the ZENER 8000. This provides several benefits including reducing the harmonic content of the AC line current. EMC Electromagnetic Compatibility. The arrangement of emission and immunity levels to achieve functional coexistence between various items of equipment in a given environment. ΕN The enable input on the ZENER 8000. ESO Essential Services Override. A mode of operation that disables certain protection features in order to allow the ZENER 8000 and/or the motor to run to destruction in certain circumstances, for example clearing smoke from a building. HVAC Heating, Ventilation and Air Conditioning [industry] IEC International Electrotechnical Commission, publisher of many standards related to electrical / electronics technology. These are the designations of differential analog inputs on the ZENER 8000. The ZENER IN+, IN-8000 will respond to the difference between the two inputs, rather than the voltage between either input and AN COM. JOG A control input that causes motion only while it is active (ie non-latched) that is usually used to manually operate equipment for the purposes of setting up or alignment prior to continuous operation. LATCH A feature of a control input that requires only a momentary signal (e.g. contact closure) to provide sustained (latched) operation. Operation of the ZENER 8000 from the console pushbuttons on the enclosure. Local [The American] National Electrical Manufacturer's Association, publishers of various NEMA NEMA standards. PF Power factor. The ratio of real (active or in-phase) current to the total current in an AC circuit. PID A type of automatic controller that seeks to drive a measured value (e.g. temperature, pressure etc) to a preset value by means of a control effort (e.g. motor speed) determined by proportional, integral, and derivative functions. PID, reverse acting A PID control system in which an increase in control effort (e.g. motor speed) results in a decrease in the measures variable (e.g. temperature). A common example is a cooling tower where an increase in fan speed causes a reduction

in water temperature.

Ramp	A control function within the ZENER 8000 that controls the rate at which the motor speed can increase or decrease.
Remote	Operation of the ZENER 8000 via connections made to the control board terminal strip.
RMS	Technically, Root-Mean-Square. A method of measuring an AC voltage or current that gives the same numerical result as a DC voltage or current would on the basis of heating effect.
RMS line current	AC input current measured in a way that reflects the true heating value of the current.
SCN	The terminal on the ZENER 8000 for the connection of the screen of all cabled associated with analogue and digital control functions.
UL	Underwriters Laboratories Inc. An American organization involved in product safety standards and certification.
Variable Torque	A load characteristic in which the driving torque requirement is significantly influenced by speed. This term is most often used to describe the load characteristic of centrifugal fans and pumps.
VRef	A reference voltage (5.0V) available on the ZENER 8000 control terminal strip to assist in generating a speed reference voltage etc.

ZENER ELECTRIC PTY LIMITED

ACN 001 595 428 366 Horsley Rd Australia

PO Box 347 Milperra NSW 2214 Milperra NSW 2144 E: sales@zener.net Australia

T: +61 2 97953600

http://www.zener.com.au © Zener Electric Pty Limited 2018 IM00124A 29th May 2018